
Adaptively Pruned Spiking Neural Networks for Energy-Efficient
Intracortical Neural Decoding

Francesca Rivelli, Martin Popov, Charalampos S. Kouzinopoulos and Guangzhi Tang

©2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

Abstract— Intracortical brain-machine interfaces demand
low-latency, energy-efficient solutions for neural decoding.
Spiking Neural Networks (SNNs) deployed on neuromorphic
hardware have demonstrated remarkable efficiency in neural
decoding by leveraging sparse binary activations and efficient
spatiotemporal processing. However, reducing the computa-
tional cost of SNNs remains a critical challenge for develop-
ing ultra-efficient intracortical neural implants. In this work,
we introduce a novel adaptive pruning algorithm specifically
designed for SNNs with high activation sparsity, targeting
intracortical neural decoding. Our method dynamically ad-
justs pruning decisions and employs a rollback mechanism to
selectively eliminate redundant synaptic connections without
compromising decoding accuracy. Experimental evaluation on
the NeuroBench Non-Human Primate (NHP) Motor Prediction
benchmark shows that our pruned network achieves perfor-
mance comparable to dense networks, with a maximum tenfold
improvement in efficiency. Moreover, hardware simulation on
the neuromorphic processor reveals that the pruned network
operates at sub-µW power levels, underscoring its potential for
energy-constrained neural implants. These results underscore
the promise of our approach for advancing energy-efficient
intracortical brain-machine interfaces with low-overhead on-
device intelligence.

I. INTRODUCTION

Intracortical neural implants play a pivotal role in brain-
machine interfaces (BMIs) and neuroprosthetic systems by
enabling the restoration of lost sensory, motor, or cognitive
functions [1], [2]. For these devices to operate effectively,
they must process neural signals in real-time within the
brain under strict power constraints imposed by battery or
wireless energy transfer [3], [4]. Low-latency processing is
essential to ensure immediate response, which is critical for
applications such as prosthetic limb control and speech de-
coding [5]. Furthermore, heat dissipation is a critical concern
limiting the maximum power consumption, because even
minor temperature increases in the sensitive environment
of the human brain can jeopardize surrounding tissues [6].
Recent advances in deep learning have significantly im-
proved the accuracy of intracortical neural decoding [7], [8].
However, the substantial computational cost associated with
deep neural networks hinders their direct implementation

Francesca Rivelli, Martin Popov, Charalampos S. Kouzinopoulos and
Guangzhi Tang are with the Department of Advanced Computing Sciences,
Faculty of Science and Engineering, Maastricht University, Maastricht, The
Netherlands. guangzhi.tang@maastrichtuniversity.nl

This publication is part of the project Brain-inspired MatMul-free Deep
Learning for Sustainable AI on Neuromorphic Processor with file number
NGF.1609.243.044 of the research programme AiNed XS Europe which is
(partly) financed by the Dutch Research Council (NWO) under the grant
https://doi.org/10.61686/MYMVX53467.

in resource-constrained intracortical neural implants, thereby
necessitating the development of more efficient solutions.

Neuromorphic computing using Spiking Neural Networks
(SNNs) has demonstrated significant energy efficiency im-
provements across a broad spectrum of applications [9],
[10], [11], [12]. In contrast to conventional deep neural net-
works, SNNs process spatiotemporal information efficiently
by leveraging sparse, event-driven computations and stateful
spiking neurons [13]. SNN-based approaches for intracortical
neural decoding have been investigated and have demon-
strated performance comparable to state-of-the-art meth-
ods, while incurring lower energy costs [14]. Furthermore,
the collaborative NeuroBench benchmark for neuromorphic
computing has designated intracortical neural decoding as
one of its initial tasks, underscoring the significance of this
application in demonstrating the advantages of neuromorphic
systems [15]. Although SNNs have already demonstrated ef-
ficient neural decoding, an open challenge remains in further
reducing computational costs to meet the stringent power
constraints, ultimately at the sub-µW level [16], required for
ultra-efficient intracortical neural implants.

Synaptic pruning reduces the computational cost of neural
networks by eliminating unnecessary neurons and synaptic
connections [17]. Various pruning strategies employ metrics
such as synaptic weight magnitudes [18], changes in loss
[19], and activation patterns [20] to systematically remove
network components that contribute minimally to overall
performance. In SNNs, pruning not only reduces the number
of weights but also decreases the number of synaptic oper-
ations per inference, thereby lowering overall computational
costs. For instance, weight magnitude-based pruning [21]
and activity-based pruning [22] are two methods that target
distinct SNN characteristics to enhance efficiency. However,
additional challenges arise when SNNs exhibit extremely
high activation sparsity during neural decoding. In such
cases, the network becomes highly sensitive to synaptic
pruning, and conventional pruning methods can lead to
significant performance degradation.

In this paper, we propose an adaptive pruning algorithm
to further enhance the energy efficiency of SNNs for in-
tracortical neural decoding. Our algorithm accelerates both
the pruning speed and overall pruning rate by incorporating
an adaptive execution strategy, and it directly addresses
the sensitive pruning problem through an adaptive rollback
mechanism during the pruning process. We evaluated our
approach using the NeuroBench Non-Human Primate (NHP)
Motor Prediction benchmark [15]. Compared with dense
networks of similar architectures, SNNs pruned by our

ar
X

iv
:2

50
4.

11
56

8v
1 

 [
cs

.N
E

] 
 1

5 
A

pr
 2

02
5



adaptive pruning algorithm achieve comparable prediction
performance while delivering over a maximum 10× im-
provement in efficiency. Furthermore, a hardware simulation
study employing realistic measurements from the SENECA
neuromorphic processor [23] demonstrates that our pruned
SNN can achieve sub-µW power consumption, thereby sig-
nificantly reducing the computational overhead of neural
decoding in intracortical neural implants.

II. METHOD

We employ Spiking Neural Networks (SNNs) with stateful
Leaky Integrate-and-Fire (LIF) neural models to decode
spatiotemporal information from intracortical neural signals
recorded during the Primate Reaching task. To improve
energy efficiency and reduce computational and memory re-
quirements, we developed an adaptive pruning algorithm that
minimizes the number of synapses and synaptic operations
without compromising the performance of the SNN.

A. Spiking Neural Network

In this study, we employ a multilayer SNN, illustrated
in Figure 1, to decode neural signals recorded during the
Primate Reaching task. The architecture, referred to as SNN3
in [14], comprises three hidden layers and one output layer.
All hidden layers consist of spiking LIF neurons, while the
output layer comprises two non-spiking LIF neurons whose
membrane potentials encode the two-dimensional finger ve-
locity. The inputs are binary spikes from thresholding the
intracortical neural recordings. The input dimension varies by
session, with 96 channels for Indy sessions and 192 channels
for Loco sessions, reflecting differences in the recording
devices. The fully connected SNN contains 9,900 synapses
for Indy sessions and 14,700 synapses for Loco sessions. We
applied our adaptive pruning algorithm to reduce the number
of synapses (weights) in the hidden layers of the network.

Fig. 1. Spiking neural network with 3 hidden layers for decoding recorded
neural signals of the Primate Reaching task. The input, hidden, and output
dimensions are listed. The adaptive pruning algorithm is applied to the
hidden layers of the network.

B. Leaky Integrate-and-Fire (LIF) Neurons

In our SNN, stateful LIF neurons are employed to capture
the spatiotemporal dynamics of the recorded neural signals.

At each timestep, each LIF neuron updates its state through
two sequential processes [24]: first, the membrane potential
is updated, and then the neuron may generate a spike.
In the hidden layers, neurons execute both the membrane
potential update and the spiking process, whereas neurons
in the output layer update their membrane potentials without
generating spikes.

1) Membrane potential update: The membrane potential
of a neuron at a given time t, denoted as u(t), is influenced
by its previous potential u(ti−1) at time ti−1 and the general
pre-synaptic input Î(t). The equation governing this process
is given by:

u(t) = u(ti−1)e
ti−1−t

τ + Î(t) (1)

In this formulation, the term e
ti−1−t

τ represents the ex-
ponential decay of the previous potential over time, where
e acts as the exponential decay factor, and τ is the time
constant that determines the rate of decay. The second term,
Î(t), accounts for the effect of synaptic input received at the
current time step, which is the weighted sum of input spikes.
This equation describes how the neuron’s potential evolves
over time based on both its past state and incoming synaptic
activity.

2) Spiking and reset: A neuron generates a spike when
its membrane potential u(t) reaches or exceeds a predefined
threshold θ. Mathematically, this condition is expressed as:

u(t) ≥ θ (2)

where u(t) represents the neuron’s membrane potential,
and θ is the spiking threshold that determines when an action
potential is triggered. Our threshold in the SNN is set to one.

After a spike occurs, the membrane potential is reset to
a lower value, denoted as ureset, to ensure proper neuronal
dynamics. This reset mechanism is described by:

u(t)← ureset (3)

where ureset is the reset potential that the neuron returns to
immediately after firing a spike. We set the reset potential to
zero in our SNN. This mechanism prevents continuous firing
and allows the neuron to undergo a refractory period before
it can spike again.

C. Adaptive Pruning for Spiking Neural Network

We propose the adaptive pruning algorithm to prune the
synaptic connections of SNNs. The general steps of the
algorithm are presented in Figure 2. Compared to regular
pruning methods, our approach adapts the pruning rate, fine-
tuning interactions, and pruned model based on the ongoing
pruning performance determined by the validation dataset.
This adaptive behavior reduces the number of training itera-
tions during pruning, and improves the sparsity of the model
while maintaining the performance.

We begin the pruning process with a dense SNN pre-
trained on the training dataset. The validation loss of this
pre-trained network, denoted by Lt, is used as the target



loss throughout the pruning process. Every pruning iteration
prunes the p% lowest magnitude weights and is followed by
one or more fine-tuning epochs using the training dataset.
Initially, the Starting Pruning Rate is set at its maximum
value, as the network is more robust to pruning when it
contains many synapses. After the first iteration, pruning
is performed only after the pruned SNN has been fine-
tuned to achieve the target loss. Recognizing that the pruned
network may not exactly match Lt, we introduce a Prun-
ing Tolerance range around Lt within which the loss is
considered acceptable for further pruning. Additionally, the
number of fine-tuning epochs is limited by the Pruning
Patience parameter. If the network fails to achieve the target
loss within the granted epochs, the current pruning rate is
deemed too aggressive. In such cases, the most recently
pruned model is discarded and the pruning rate is halved.
A detailed description of the adaptive pruning algorithm is
provided in Algorithm 1. Three major hyperparameters are
introduced to control the adaptiveness of our algorithm:

1) Starting Pruning Rate: Pruning rate for the first
pruning iteration and representing the highest pruning
rate during the pruning process. The rate influences
the pruning speed by directly influencing the pruning
magnitude at each step.

2) Pruning Tolerance: The rate of the pre-trained vali-
dation loss that the validation loss of pruned networks
is ”tolerated” to exceed for executing pruning. This is
introduced to take care of random fluctuations of loss
during training.

3) Pruning Patience: The number of fine-tuning epochs
to wait before halving the pruning rate and discarding
the most recent pruned network.

Our synaptic pruning algorithm can be performed either
globally or on a per-layer basis on the SNN. In the global
approach, the p% lowest-magnitude weights across all hidden
layers of the SNN are pruned, whereas in the per-layer
approach, the p% lowest-magnitude weights in each hidden
layer are pruned. We adopt the per-layer pruning approach, as
it yields a more balanced pruned SNN compared to the global
method. During GPU-based training, pruning is implemented

Fig. 2. General steps of our proposed adaptive pruning algorithm for SNN.
The pruning process keeps iterating until either the target pruned connection
percentage (pruned) is reached or the adaptive pruning rate reaches the
minimal value (pr).

Algorithm 1 SNN Adaptive Pruning Algorithm
1: Minimum pruning rate pmin ← 0.1 and maximum

pruning possible prunedmax ← 0.95 are fixed.
2: Initialize:
3: Starting Pruning Rate: pstart
4: Pruning Patience: pt
5: Pruning Tolerance: t
6: % of network that has been pruned: pruned
7: Validate the network to obtain the initial target loss Lt

8: Set the current pruning rate: pcurr = pstart
9: while pcurr ≥ pmin and pruned < prunedmax do

10: Apply pruning with rate pcurr
11: Update: pruned = pruned+ pcurr
12: Initialize current loss: Lcurr ←∞
13: Reset fine-tuning epoch counter: pepoch ← 0
14: while Lcurr > Lt(1 + t) do
15: if pepoch > pt then
16: Restore previously pruned SNN
17: Reduce pruning rate: pcurr ← pcurr/2
18: break
19: end if
20: Fine-tune epoch of the pruned SNN
21: Compute validation loss: Lcurr

22: pepoch ← pepoch + 1
23: end while
24: end while

via element-wise multiplication of the weight matrix with a
binary mask, where pruned weights are assigned a value of 0
and retained weights a value of 1. We adopt a static pruning
approach in which the same mask is reapplied at every batch
during fine-tuning and prior to validation. This ensures that
pruned weights do not regain relevance over time.

III. EXPERIMENTS AND RESULTS

A. Datasets and Experiments

We benchmarked the performance of our pruned SNN
using the Primate Reaching task from the neuromorphic
benchmark NeuroBench [15]. The task comprises data from
6 recording sessions obtained from 2 Rhesus primates (Indy
and Loco), with each subject contributing 3 sessions [25].
According to the NeuroBench benchmark, each session is
subdivided into 4 sub-sessions, within each sub-session 50%
of the data is allocated for training, 25% for validation,
and 25% for testing. The task output is a two-dimensional
prediction of finger velocity, represented by the X and Y
coordinates.

Since the NeuroBench benchmark uses a different split
for the training, validation, and test datasets than the
evaluation presented in [14], we retrained the dense
SNN3 model using the NeuroBench split so that it
could serve as the pre-trained network for pruning.
We applied adaptive pruning to the pre-trained models
from all 6 sessions using identical hyperparameters for
Starting Pruning Rate = 10 and Pruning Patience =
5, and different Pruning Tolerance = 0.1/0.05 based



on the model validation performance. Furthermore, we con-
ducted experiments to compare various pruning approaches
and performed ablation studies using data from the first
recording session in the dataset.

B. NeuroBench Harness and Selected Metrics

To fairly compare with other dense networks, we tested
all our pruned SNNs using the NeuroBench Harness library.
We selected the following metrics from NeuroBench that are
relevant to our experiments:

1) R² (coefficient of determination): This metric is
calculated separately for the X- and Y -velocity com-
ponents and taking the average. To determine the
correctness score for a session, the R2 values for both
velocity components are averaged.

R2 = 1−

n∑
i=1

(yi − ŷi)
2

n∑
i=1

(yi − ȳ)2
(4)

where n is the number of labeled points in the test
dataset, yi is the groundtruth velocity at each point,
the predicted velocity as ŷi the predicted velocity and
ȳ the mean of groundtruth velocities.

2) Connection Sparsity: Connection sparsity represents
the percentage of zero-value synaptic weights in a
neural network. It is computed by dividing the number
of zero-value synaptic weights by the overall number
of weights in the network.

3) Activation Sparsity: The average sparsity of neuron
activations across all layers, timesteps, and input sam-
ples during network execution. A value of 0 indicates
that all neurons generate non-zero activation values,
while 1 means all neurons generate activation values
equal to zero.

4) Effective Synaptic Operations: The average num-
ber of effective synaptic operations during network
execution, determined by non-zero neural activations
and synaptic weights. This metric is categorized
into Multiply-and-Accumulate (MAC) operations for
ANNs, and Accumulate (AC) operations for SNNs.

Detailed descriptions of each selected metric can be found
in the NeuroBench Harness [15].

C. Comparisons with Baseline Dense Networks

We evaluated the test performance of our adaptive pruning
algorithm relative to dense networks using the selected
Neurobench metrics and the benchmarking harness. Ta-
ble I presents the average results across different recording
sessions. Compared to dense SNN and ANN approaches,
our sparsely pruned SNN achieves comparable performance
while using only 10% of the effective synaptic operations in
most sessions. With similar activation sparsity, this drastic
reduction in synaptic operations is entirely attributable to
the increased connection sparsity introduced by our pruning
algorithm. Since the network operation cost on hardware
is proportional to the number of synaptic operations, this

reduction directly enhances the energy efficiency of network
inference.

Although our pruned network achieves performance com-
parable to that of dense networks, pruning still results in a
reduction in R2. To investigate the cause of this performance
reduction, Table II presents a detailed comparison of the
performance between the pre-trained dense SNN and the
pruned SNN for each recording session. We observed that
the reduction in R2 varies across recording sessions. Specif-
ically, R2 remains relatively stable for indy 20160622 01,
indy 20170131 02, and loco 20170301 05, whereas other
sessions exhibit more pronounced declines after pruning.
This suggests that the pruning process may be overly aggres-
sive for these sessions, likely due to their already extremely
high activation sparsity (exceeding 99%), which increases
sensitivity to synaptic pruning. To mitigate this effect, we
reduced the pruning tolerance for the unstable sessions.

D. Comparing Global and Per-layer Pruning

Table III compares the single session performance of
global and per-layer pruning approaches. Our results indicate
that while the global pruning method achieves performance
similar to that of the per-layer approach, it exhibits a slightly
lower R2. The per-layer pruning approach is preferred be-
cause it enforces a uniform pruning rate across all layers,
resulting in similar connection sparsity within each layer.
This uniformity benefits network deployment on neuromor-
phic hardware, as it ensures that each layer consumes similar
computational resources and operates within comparable
time constraints.

Figures 3 and 4 show the detailed adaptive pruning pro-
cess for both per-layer and global approaches on a single
recording session. In the figures, the red dotted lines indicate
the epochs at which pruning operations are executed, with
the network pruned rate after pruning annotated above each
line. The shaded lines represent pruning operations that were
ultimately discarded because the network failed to reach the
target loss after fine-tuning. The pruning process terminates
once the exit criteria are met. In both approaches, the process
terminates upon reaching the minimum pruning rate. This
minimum is achieved after multiple adaptive reductions in
the pruning rate, prompted by the network’s failure to achieve
the target loss after fine-tuning. Consequently, the total
number of fine-tuning epochs exceeds the optimal effective
epochs required to obtain the final pruned SNN. However, we
argue that these additional training epochs are not wasted, as
they represent an exploration process that facilitates further
improvements in sparsity.

E. Ablation Studies on Adaptive Pruning

We conducted two ablation studies to evaluate the con-
tributions of individual components in our adaptive pruning
algorithm. Specifically, we investigated the roles of the tol-
erance and rate decay components. The tolerance component
governs when the network initiates pruning based on the
validation loss, while the rate decay component discards
ineffectively pruned models and reduces the pruning rate



TABLE I
PERFORMANCE COMPARISON BETWEEN BASELINE DENSE NETWORKS AND OUR PRUNED NETWORKS.

Average of Indy sessions Average of Loco sessions
Method R2 Connection Activation Effective R2 Connection Activation Effective

Sparsity Sparsity Operations Sparsity Sparsity Operations
NeuroBench ANN [15] 0.593 0.0 0.683 3836 MACs 0.558 0.0 0.668 6103 MACs
NeuroBench SNN [15] 0.593 0.0 0.997 276 ACs 0.568 0.0 0.999 551 ACs

Dense SNN3 [14] 0.583 0.0 0.9813 408.14 ACs 0.570 0.0 0.9893 628.10 ACs
Our adaptive pruning+SNN3 0.570 0.8915 0.9826 38.37 ACs 0.546 0.791 0.9898 95.38 ACs

TABLE II
PERFORMANCE COMPARISON OF EACH RECORDING SESSION BETWEEN DENSE NETWORKS AND OUR PRUNED NETWORKS.

Session name Method Tolerance R2 Connection Activation Effective Pruned
Sparsity Sparsity Operations (ACs) Rate (%)

indy 20160622 01 Dense SNN3[14] - 0.6618 0.0 0.9789 535.2 -
Adaptive Pruning 0.1 0.6539 0.8978 0.9763 54.63 90

indy 20170131 02 Dense SNN3[14] - 0.5812 0.0 0.9711 391.0 -
Adaptive Pruning 0.1 0.5653 0.9072 0.9786 27.88 89

indy 20160630 01
Dense SNN3[14] - 0.5065 0.0 0.9937 298.1 -

Adaptive Pruning 0.1 0.4559 0.7966 0.9930 45.67 80
Adaptive Pruning 0.05 0.4919 0.8696 0.9929 32.60 87

loco 20170301 05 Dense SNN3[14] - 0.5978 0.0 0.9852 720.3 -
Adaptive Pruning 0.1 0.5805 0.9062 0.9890 50.91 91

loco 20170215 02 Dense SNN3[14] - 0.5475 0.0 0.9919 608.0 -
Adaptive Pruning 0.1 0.4859 0.8810 0.9883 48.57 88
Adaptive Pruning 0.05 0.5145 0.6678 0.9911 155.85 66

loco 20170210 03 Dense SNN3[14] - 0.5648 0.0 0.9906 555.8 -
Adaptive Pruning 0.1 0.5295 0.8714 0.9884 45.60 87
Adaptive Pruning 0.05 0.5424 0.7991 0.9893 79.37 79

TABLE III
COMPARISON OF GLOBAL AND LAYER-WISE PRUNING APPROACHES.

Metric Global Pruning Layer Pruning
R2 0.6333 0.6539

Connection Sparsity 0.8811 0.8978
Activation Sparsity 0.9724 0.9763

Effective ACs 57.61 54.63
Pruned Rate (%) 89% 90%

Total Epoch 45 39
Optimal Epoch 33 21

Fig. 3. Training and validation loss during the adaptive pruning process
using the per-layer approach.

Fig. 4. Training and validation loss during the adaptive pruning process
using the global approach.

over time. In the first study, we implement fixed pruning
by omitting both the tolerance and rate decay components.
In this scheme, 10% of the network is pruned after every
5 epochs of fine-tuning, and the process continues until the
overall pruning rate reaches 90%. In the second study, we
incorporate the tolerance component, enabling the pruning
process to decide when to prune based on the validation loss.
However, this study omits rate decay. The pruning process
terminates when the target loss cannot be achieved within the



TABLE IV
PERFORMANCE COMPARISON OF DIFFERENT ABLATION STUDIES.

Ablations R2 Connection Activation Effective Pruned Total Optimal
Tolerance Rate Decay Sparsity Sparsity Operations (ACs) Rate (%) Epoch Epoch

No No 0.515 0.902 0.975 55.76 90% 40 -
Yes No 0.661 0.812 0.977 102.88 80% 16 10
Yes Yes 0.654 0.898 0.976 54.63 90% 33 21

number of fine-tuning epochs specified by Pruning Patience.
Table IV presents the performance comparison between

the ablation studies and the full adaptive pruning algorithm
on a single recording session. Compared to the fixed pruning
approach, our adaptive pruning method achieves higher R2

while maintaining the same connection sparsity and requir-
ing fewer training epochs. These results demonstrate the
effectiveness of the adaptive approach in achieving rapid
pruning and high performance. Furthermore, compared to
a variant that employs only the tolerance component, the
full adaptive algorithm achieves higher connection sparsity
and reduces the effective number of synaptic operations by
nearly 50%, while maintaining similar R2. These findings
indicate that incorporating rate decay and adaptive rollback
on aggressively pruned networks enables the pruning process
to achieve higher sparsity without sacrificing performance.

F. Hardware Simulation on Neuromorphic Processor

To evaluate the hardware benefits of our adaptive pruning
algorithm, we conducted a hardware simulation study using
realistic measurements obtained from the SENECA neu-
romorphic processor [26]. SENECA is an energy-efficient,
flexible digital neuromorphic processor designed for sparse,
event-driven neural networks [23]. To implement our sparse
SNN on SENECA, we programmed two micro-kernels to
handle spike integration and membrane potential updates for
LIF neurons. On SENECA, integrating a single spike (1 AC)
into a LIF neuron incurs an energy cost of 12.7 pJ, while
updating a LIF neuron at each timestep requires 14.6 pJ.
Table V presents the hardware simulation results for one
timestep of both the dense and pruned SNNs based on
benchmarking results from one recording session. The SNN
inference timestep corresponds to 4 ms of neural decoding,
and this time bin is used to compute the average power
consumption of the SNN. The results demonstrate that our
adaptive pruning approach significantly reduces the energy
cost of neural decoding and requires minimal power that can
potentially support intracortical decoding.

TABLE V
NEUROMORPHIC HARDWARE SIMULATION COMPARISON.

Method Energy Cost (pJ) Power (µW)
Dense SNN 6811.6 1.7
Pruned SNN 708.4 0.18

IV. CONCLUSION AND DISCUSSION

In this work, we introduce an adaptive pruning algorithm
designed to reduce synaptic operations in SNNs for intra-
cortical neural decoding. Our experimental findings indicate
that this strategy effectively increases connection sparsity,
thereby lowering computational demands and enhancing en-
ergy efficiency in brain-machine interfaces. By selectively
eliminating redundant synaptic connections, our approach
optimizes performance without compromising decoding ac-
curacy, paving the way for more energy-efficient neural
implant solutions.

Our adaptive pruning algorithm is specifically designed
for SNNs that exhibit high activation sparsity, a property that
makes them particularly harmed by performance degradation
during pruning. While our approach has been demonstrated
on a baseline SNN architecture, its modular design facilitates
extension to more complex recurrent SNN models for neural
decoding [27]. Adapting the algorithm for recurrent networks
will require a balancing strategy that distributes pruning
between recurrent and feedforward connections. Given that
SNNs can effectively perform spatiotemporal processing
even in the absence of recurrent connections, it is possible
that prioritizing the pruning of recurrent connections could
be achieved without compromising overall performance.

Our adaptive pruning algorithm can be synergistically inte-
grated with complementary network compression techniques,
such as quantization [28], to further enhance the efficiency
of intracortical neural decoding. Applying quantization to
the remaining synaptic weights not only reduces memory
requirements but also lowers the energy cost per synaptic
operation. Dedicated neuromorphic hardware is essential to
fully leverage the efficiency gains of the pruned SNN [29],
[30]. However, current neuromorphic platforms may not
adequately address the unique requirements of intracortical
neural implants [31]. Hence, further hardware development
is necessary to realize the full benefits of our approach in
practical applications.

REFERENCES

[1] S. Buccelli, Y. Bornat, I. Colombi, M. Ambroise, L. Martines,
V. Pasquale, M. Bisio, J. Tessadori, P. Nowak, F. Grassia, A. Averna,
M. Tedesco, P. Bonifazi, F. Difato, P. Massobrio, T. Levi, and M. Chi-
appalone, “A neuromorphic prosthesis to restore communication in
neuronal networks,” iScience, vol. 19, pp. 402–414, 2019.

[2] M. A. Cervera, S. R. Soekadar, J. Ushiba, J. Del R Millán, M. Liu,
N. Birbaumer, and G. Garipelli, “Brain-computer interfaces for post-
stroke motor rehabilitation: a meta-analysis,” Wiley Online Library,
vol. 5, pp. 651–663, 2018.



[3] C. Lee, B. Kim, J. Kim, S. Lee, T. Jeon, W. Choi, S. Yang, J.-H. Ahn,
J. Bae, and Y. Chae, “A miniaturized wireless neural implant with
body-coupled power delivery and data transmission,” IEEE Journal of
Solid-State Circuits, vol. 57, no. 11, pp. 3212–3227, 2022.

[4] S. Miziev, W. A. Pawlak, and N. Howard, “Comparative analysis
of energy transfer mechanisms for neural implants,” Frontiers in
Neuroscience, vol. 17, p. 1320441, 2024.

[5] F. R. Willett, D. T. Avansino, L. R. Hochberg, J. M. Henderson,
and K. V. Shenoy, “High-performance brain-to-text communication
via handwriting,” Nature, vol. 593, no. 7858, pp. 249–254, 2021.

[6] C. Serrano-Amenos, F. Hu, P. T. Wang, S. Kellis, R. A. Andersen,
C. Y. Liu, P. Heydari, A. H. Do, and Z. Nenadic, “Thermal analysis
of a skull implant in brain-computer interfaces,” in 2020 42nd Annual
International Conference of the IEEE Engineering in Medicine &
Biology Society (EMBC). IEEE, 2020, pp. 3066–3069.

[7] F. Liu, S. Meamardoost, R. Gunawan, T. Komiyama, C. Mewes,
Y. Zhang, E. Hwang, and L. Wang, “Deep learning for neural decoding
in motor cortex,” Journal of Neural Engineering, vol. 19, no. 5, p.
056021, 2022.

[8] M. W. Mathis, A. P. Rotondo, E. F. Chang, A. S. Tolias, and A. Mathis,
“Decoding the brain: From neural representations to mechanistic
models,” Cell, vol. 187, no. 21, pp. 5814–5832, 2024.

[9] B. Yin, F. Corradi, and S. M. Bohté, “Accurate and efficient time-
domain classification with adaptive spiking recurrent neural networks,”
Nature Machine Intelligence, vol. 3, no. 10, pp. 905–913, 2021.

[10] F. Paredes-Vallés, J. Hagenaars, J. Dupeyroux, S. Stroobants, Y. Xu,
and G. de Croon, “Fully neuromorphic vision and control for au-
tonomous drone flight,” Science Robotics, vol. 9, no. 90, p. eadi0591,
2024.

[11] N. Kumar, G. Tang, R. Yoo, and K. P. Michmizos, “Decoding eeg with
spiking neural networks on neuromorphic hardware,” Transactions on
Machine Learning Research, 2022.

[12] Y. Xu, G. Tang, A. Yousefzadeh, G. C. de Croon, and M. Sifalakis,
“Event-based optical flow on neuromorphic processor: Ann vs. snn
comparison based on activation sparsification,” Neural Networks, p.
107447, 2025.

[13] A. Tavanaei, M. Ghodrati, S. R. Kheradpisheh, T. Masquelier, and
A. Maida, “Deep learning in spiking neural networks,” Neural net-
works, vol. 111, pp. 47–63, 2019.

[14] P. Hueber, G. Tang, M. Sifalakis, H.-P. Liaw, A. Micheli, N. Tomen,
and Y.-H. Liu, “Benchmarking of hardware-efficient real-time neural
decoding in brain–computer interfaces,” Neuromorphic Computing and
Engineering, vol. 4, no. 2, p. 024008, 2024.

[15] J. Yik, K. Van den Berghe, D. den Blanken, Y. Bouhadjar, M. Fabre,
P. Hueber, W. Ke, M. A. Khoei, D. Kleyko, N. Pacik-Nelson et al.,
“The neurobench framework for benchmarking neuromorphic comput-
ing algorithms and systems,” Nature Communications, vol. 16, no. 1,
p. 1545, 2025.

[16] B. Chatterjee, M. Nath, G. Kumar K, S. Xiao, K. Jayant, and
S. Sen, “Biphasic quasistatic brain communication for energy-efficient
wireless neural implants,” Nature Electronics, vol. 6, no. 9, pp. 703–
716, 2023.

[17] H. Cheng, M. Zhang, and J. Q. Shi, “A survey on deep neural network
pruning: Taxonomy, comparison, analysis, and recommendations,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
2024.

[18] J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding
sparse, trainable neural networks,” arXiv preprint arXiv:1803.03635,
2018.

[19] B. Hassibi, D. G. Stork, and G. J. Wolff, “Optimal brain surgeon and
general network pruning,” in IEEE international conference on neural
networks. IEEE, 1993, pp. 293–299.

[20] Y. He and L. Xiao, “Structured pruning for deep convolutional neural
networks: A survey,” IEEE transactions on pattern analysis and
machine intelligence, 2023.

[21] M. Gupta, E. Camci, V. R. Keneta, A. Vaidyanathan, R. Kanodia,
C. Foo, M. Wu, and J. Lin, “Is complexity required for neural network
pruning? a case study on global magnitude pruning,” arXiv preprint,
January 2024.

[22] Y. Li, Q. Xu, J. Shen, H. Xu, L. Chen, and G. Pan, “Towards efficient
deep spiking neural networks construction with spiking activity based
pruning,” arXiv preprint, June 2022.

[23] Y. Xu, K. Shidqi, G.-J. van Schaik, R. Bilgic, A. Dobrita, S. Wang,
R. Meijer, P. Nembhani, C. Arjmand, P. Martinello et al., “Optimizing
event-based neural networks on digital neuromorphic architecture: a

comprehensive design space exploration,” Frontiers in Neuroscience,
vol. 18, p. 1335422, 2024.

[24] Y. Wu, L. Deng, G. Li, J. Zhu, and L. Shi, “Spatio-temporal back-
propagation for training high-performance spiking neural networks,”
Frontiers in neuroscience, vol. 12, p. 331, 2018.

[25] J. G. Makin, J. E. O’Doherty, M. M. Cardoso, and P. N. Sabes, “Supe-
rior arm-movement decoding from cortex with a new, unsupervised-
learning algorithm,” Journal of neural engineering, vol. 15, no. 2, p.
026010, 2018.

[26] G. Tang, A. Safa, K. Shidqi, P. Detterer, S. Traferro, M. Konijnenburg,
M. Sifalakis, G.-J. van Schaik, and A. Yousefzadeh, “Open the box of
digital neuromorphic processor: Towards effective algorithm-hardware
co-design,” in 2023 IEEE International Symposium on Circuits and
Systems (ISCAS). IEEE, 2023, pp. 1–5.

[27] T. Liu, J. Gygax, J. Rossbroich, Y. Chua, S. Zhang, and F. Zenke,
“Decoding finger velocity from cortical spike trains with recurrent
spiking neural networks,” in 2024 IEEE Biomedical Circuits and
Systems Conference (BioCAS). IEEE, 2024, pp. 1–5.

[28] T. Liang, J. Glossner, L. Wang, S. Shi, and X. Zhang, “Pruning
and quantization for deep neural network acceleration: A survey,”
Neurocomputing, vol. 461, pp. 370–403, 2021.

[29] Y. Chen, W. Ye, Y. Liu, and H. Zhou, “Sibrain: A sparse spatio-
temporal parallel neuromorphic architecture for accelerating spiking
convolution neural networks with low latency,” IEEE Transactions on
Circuits and Systems I: Regular Papers, 2024.

[30] Y. Kuang, X. Cui, Z. Wang, C. Zou, Y. Zhong, K. Liu, Z. Dai, D. Yu,
Y. Wang, and R. Huang, “Essa: Design of a programmable efficient
sparse spiking neural network accelerator,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 30, no. 11, pp. 1631–
1641, 2022.

[31] Y. Wang, X. Yang, X. Zhang, Y. Wang, and W. Pei, “Implantable
intracortical microelectrodes: reviewing the present with a focus on the
future,” Microsystems & Nanoengineering, vol. 9, no. 1, p. 7, 2023.


	INTRODUCTION
	Method
	Spiking Neural Network
	Leaky Integrate-and-Fire (LIF) Neurons
	Membrane potential update
	Spiking and reset

	Adaptive Pruning for Spiking Neural Network

	Experiments and Results
	Datasets and Experiments
	NeuroBench Harness and Selected Metrics
	Comparisons with Baseline Dense Networks
	Comparing Global and Per-layer Pruning
	Ablation Studies on Adaptive Pruning
	Hardware Simulation on Neuromorphic Processor

	Conclusion and Discussion
	References

