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Fire incidents in residential and industrial areas are often the cause of human casualties and property damage.
Although there are existing systems that detect fire and monitor the presence of people in indoor areas,
research on their implementation in embedded platforms is limited. This article introduces an ultra-low-
power embedded system for fire detection and crowd counting using efficient deep learning methods. For
the prediction of fire occurrences, environmental and gas sensor along with multilayer perceptron nodes are
used. For crowd counting, a custom lightweight version of YOLOv5 is introduced, using an architecture based
on ShuffleNetV2, resulting in a model with low memory requirements, high accuracy predictions, and fast
inference on an embedded platform. The accuracy, power consumption, and memory requirements of the
proposed system are evaluated using public datasets and datasets acquired by the environmental and image
sensors, and its performance is compared to that of existing approaches.
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1 INTRODUCTION

Every year, several fires occur indoors that cause extensive property damage as well as significant
injuries and loss of human life. The European Fire Safety Alliance estimates that over 5,000 people
die from residential fires in Europe per year, while the number of people injured is approximately
an order of magnitude higher [3]. In surveillance systems, fire monitoring is a significant feature
that can be used to detect fire in early stages to avoid its spread. Furthermore, the utilization of
crowd counting can provide assistance in the evacuation process by providing to the authorities
the total number of people trapped in an indoor space during a fire incident.

Currently, traditional fire detection and crowd counting systems utilize one or more sensors,
usually without any memory or power constraints, as the systems that execute the models have
enough resources and are equipped with a continuous power supply. Existing fire detection sys-
tems due to the need for continuous power supply or high power requirements cannot operate in
case of a power outage, which is very common during a fire [10, 50]. Moreover, crowd counting
technologies that use commercial Photoelectric Infrared (PIR) motion sensors or Infrared beam
counters and thermal sensors need continuous power supply and cannot provide the exact num-
ber of people accurately [13, 39]. Additionally, machine learning (ML) algorithms used for fire
detection and crowd counting are generally complex with increased memory requirements. As a
result, such systems are not feasible to be implemented on a low-power embedded system that is
constrained in terms of resources.

To fill this research gap, this article proposes a low-power embedded system for indoor fire
detection and crowd counting during fire incidences using efficient deep learning methods. The
embedded system consists of a fire detection sub-system that is based on measurements from envi-
ronmental and gas sensors and a crowd counting sub-system that is based on an image sensor. The
system can inform the fire department and send a notification when a fire incident occurs along
with the total number of people occupying an indoor area to manage the rescue of trapped peo-
ple more effectively. With the use of a battery, or optionally a photovoltaic energy harvester, the
system is energy-autonomous and can operate even in the case of a power outage. Moreover, the
crowd counting sub-system periodically estimates the total number of people to be available in case
of a chaotic situation where it would be difficult for the system to accurately detect the total num-
ber of people. Finally, the low-power consumption characterizes the system as environmentally
sustainable, reducing energy waste and having minimal negative impacts on the environment.

The method presented for fire detection and the proposed modifications of the original YOLOv5
algorithm, along with its low power consumption and constrained memory footprint, make it an
innovative solution for integration into an embedded system.

The major scientific contributions of this article are as follows:

• An ultra-low-power system for fire detection and crowd counting that can operate au-
tonomously for up to two months without any charging;
• An improved version of an existing fire detection system validated using a public and a

custom dataset;
• A proposed lightweight modification of the YOLOv5 algorithm for embedded systems based

on ShuffleNetV2 architecture;
• An evaluation of the proposed modifications of YOLOv5, based on the original algorithm;
• A thorough sub-system-wise breakup of the energy consumption.

The rest of the article is structured as follows: Section 2 details previous research on fire
detection and crowd counting systems. Section 3 presents the overall architecture of the proposed
system, details regarding the implemented embedded platform, and the configurations of the
MCU. Section 4 provides information for the two sub-systems along with the proposed methods.
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In Section 5, experimental results are given on energy consumption and memory requirements,
and the accuracy of the proposed methods are compared with existing approaches. Finally,
Section 6 presents the conclusions of this research and discusses future work.

2 RELATED WORK

In the past few years, a growing number of papers have been published on fire detection and crowd
counting systems, however, research on their implementation on embedded systems is limited.
This section details related work on such systems.

2.1 Fire Detection Systems

In the literature, two different approaches for fire detection have been proposed. The first was
based on environmental sensing, including temperature, humidity, smoke, and gas sensors, with
the main goal being the detection of fire incidents at an early stage without constraints in terms
of memory or power consumption. The second was based on image processing, combining image
sensing and machine learning algorithms. A system following this approach can detect a fire from
direct flames, but usually only after it has spread significantly.

Sowah et al. designed and implemented a multisensor fire detection system based on Fuzzy

Logic (FZ) and a Convolutional Neural Network (CNN) [37]. Multiple fire signatures, such as
flames, smoke, and heat, as well as images from surveillance cameras, were used. The system was
implemented and tested on a Beaglebone microprocessor, a computing platform with an increased
performance compared to the embedded platform used in this article, with an accuracy of 94% for
the CNN algorithm and 90% for FZ.

An FZ system, based on an Arduino Uno, was also designed in Reference [36] to identify the
existence of fire. Data was collected from flame, temperature, and smoke sensors. The accuracy of
the implemented system was 95.83% with an execution time of 5 seconds.

Ouanid et al. developed a fire detection system based on the sensing of smoke density, temper-
ature, and carbon monoxide [52]. The algorithm included an Artificial Neural Network (ANN)

with a single hidden layer and four neurons and was implemented on an ATmega16 microcon-
troller. The execution time of the implementation was 30 seconds, and the lowest reported mean
squared error was approximately 5.39 × 10−10.

In Reference [35], a Wireless Sensor Network was designed and implemented using multiple
sensors for indoor fire detection. The system was based on a Raspberry PI. Smoke, gas, and tem-
perature sensors were used for the implementation. The system generated an alarm when two or
more sensors’ values exceeded predefined threshold values. The energy consumption of the de-
ployed sensors was computed, with a minimum of 0.5mWh and a maximum of 60mWh reported.

In Reference [38], a low-power sensor node for early detection and monitoring of fire was pre-
sented. The authors developed a detection algorithm based on the Dempster-Shafer theory (DS).
The system was evaluated on an MSP430 microcontroller using a temperature and humidity sensor.
The same algorithm, combined with a threshold method, was utilized in Reference [9]. The system
was implemented on a low-power ATmega1281 processor using data collected from temperature,
humidity, and light sensors.

A system based on an ATmega microprocessor was presented in Reference [47]. The system
utilized a temperature and gas sensor, and an alarm is transmitted via a GSM module in case of
fire detection. The detection method proposed by the authors included if-then rules that utilize
data from the temperature and gas sensor to detect the occurrence of fire.

A low-power wireless smoke alarm system for home fires is presented in Reference [24]. The
system utilizes a combination of smoke, temperature, and CO sensors. Additionally, it includes
a mobile application to notify the users in case of fire. According to the authors, the device
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consumes 36 Ah, providing a battery life of up to five years. The accuracy of the system was not
reported.

2.2 Crowd Counting Systems

Various technologies have been used for people counting applications in the literature as well as
in commercial systems, including: infrared beams or PIR systems [6, 49], thermal sensors [14, 46],
Wi-Fi trackers [19, 48], and image sensors [23, 32].

Infrared beam counters consist of receiver and transmitter units installed side-by-side at the
entrances. A count occurs whenever an obstruction to the transmission signal appears. Infrared
sensors have the ability to operate in a light-free environment and are able to identify and count
people moving in both directions using multiple beam sensors [2]. However, the disadvantages
of these systems are their inability to handle multiple people passing simultaneously and the re-
stricted installation specifications, as the system has to be installed beside a narrow door with the
accuracy decreasing as the width of the door increases [32]. Additionally, it is unable to identify
relatively stationary occupants, the detection range of each sensor is limited, and it is unable to
distinguish humans and other moving objects [53].

Thermal sensors are typically installed at gates or entrances to detect body heat [2]. The accu-
racy of detecting the heat emitted from people may be impacted by the presence of heat sources
and external weather conditions. Crowded areas can also reduce accuracy, as thermal counters
cannot distinguish between objects due to their different temperature signatures. The main advan-
tages of thermal sensors are that they are unaffected by changes in the illumination and do not
require a background subtraction algorithm, increasing the processing time [45]. However, the
high cost of acquisition and their limited detection range are significant drawbacks [48].

Wi-Fi trackers are used to locate and count people in a room. They can work as long as the
Wi-Fi is enabled and there is access to it. Users must be connected to a Wi-Fi access point to be
counted. This can result in inaccurate results, since this sensor type depends on having a Wi-Fi
access point where people from different rooms may be connected [48]. Additionally, if a user has
multiple devices connected to the same Wi-Fi access point, then the sensor’s count values may be
inflated [27].

Another type of common commercial device for crowd counting and occupancy detection is im-
age sensors [53]. Accurate occupancy data can be obtained by analyzing the frames that an image
sensor has captured. Complex image processing algorithms are used for crowd counting and usu-
ally consist of three distinct steps: background subtraction, motion tracking, and occupant recog-
nition [11]. Vision-based sensing systems have the ability to recognize different objects occupying
a room, including people and animals, and can achieve highly accurate results [48]. Image sen-
sors often require the utilization of capable systems that can efficiently execute image-processing
algorithms as well as the presence of an ambient light source.

Crowd counting implementations that utilize image sensors can be generally classified into two
major categories: treating crowd counting as an object detection problem [7, 14] and using the
crowd density estimation based on features and regression analysis [1, 44]. Object detection-based
methods can be applied by training detectors to locate individual people in images. Thus, certain
features are extracted and are subsequently used to train a binary or multi-class classifier.
However, regression-based models estimate the crowd count using extracted image features and
applying machine learning techniques to perform a regression between the image features and
the crowd size.

Conti et al. proposed two different low-power approaches based on CNNs to estimate the
occupancy of classrooms [7]. The first CNN consisted of eight layers and was used to classify
and count heads. The second method was based on the estimation of crowd density with a
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CNN regression model. The system was implemented on a Samsung Exynos 5410, with a root

mean square error (RMSE) of 6.42 people and an energy cost of 3.97J per image. Despite the
low RMSE, this work is not appropriate for a low-power embedded system due to its increased
computational requirements.

Gomez et al. designed and developed a low-power crowd counting algorithm using a thermal
image sensor and CNN [14]. The CNN consisted of three convolution layers with one pooling layer
and the softmax function on the last layer before the output. The system was implemented and
tested on a Cortex M4 platform with an error of ±1 person in 84.4% of the test set. The execution
time of the algorithm was approximately 2.3 minutes with a power consumption of 0.48mAh.

A lightweight method for crowd counting in indoor rooms, based on motion and size criteria
using a histogram, was presented in Reference [44]. The system was evaluated on iMote2k, a low-
power platform with high-performance specifications, including an Intel XScale processor. The
dataset for the evaluation contained images with one, two, and three people with an accuracy of
89.5%, 82.48%, and 79.8%, respectively.

In Reference [1], a histogram of gradients and the Support Vector Machine (SVM) algo-
rithm were used for crowd counting. The system was implemented on an FPGA platform and
low-resolution grayscale 320× 280 images were used for its evaluation. The authors compared the
performance of the algorithm using an FPGA platform and a PC with an i5 processor and concluded
that their method was almost five times faster when executed in FPGA compared to a PC processor.

2.3 Fire Detection and Crowd Counting System

There is only limited research on approaches that combine fire detection and crowd counting
methods in low-power systems. A vision-based, embedded fire detection system was presented in
Reference [5] to detect the occurrence of fire and count the number of people in a building. The
authors used a Raspberry Pi and a Kinect sensor to implement two different deep neural network
models, MobileNet SSD and ResNet101. The distance of the vision node from people and the light
intensity inside a room were evaluated, with a mean accuracy of 87.5% and 75%, respectively.

As can be seen from the analysis of the state-of-the-art research, as presented in the sections
above, existing literature works have increased requirements in terms of power consumption and
execution time, utilize detection methods with a higher complexity, and generally have to be im-
plemented on platforms with demanding computational specifications, making them challenging
to be utilized efficiently in low-power embedded platforms.

3 SYSTEM ARCHITECTURE

This article describes an indoor, ultra-low-power fire detection and crowd counting system us-
ing two deep learning models, based on the MLP and YOLO algorithms, respectively. For the fire
detection sub-system, a preliminary report with initial findings was published in Reference [31].
A vision-based model is used for the crowd counting sub-system. More details on the two sub-
systems are provided in Sections 4.1 and 4.2, respectively. In the case of a fire occurence indoors,
the proposed system transmits wirelessly a notification of the event as well as a report on the
number of people located inside.

Sections 3.1 and 3.2 analyze the hardware components of the embedded platform and the config-
uration of the MCU. Additionally, Section 3.3 illustrates the methodology of the proposed system
for fire detection and crowd counting.

3.1 Embedded Platform

The proposed system is implemented on a low-power embedded platform. It uses the
STM32L496VGT6P ARM Cortex-M4 ultra-low-power MCU [42] from ST Microelectronics
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for processing. The MCU has a frequency of up to 80 MHz and can operate in the range between
1.71V and 3.6V , with up to 1Mb of Flash memory and 320 KB of SRAM.

For temperature and humidity sensing, the BME680 gas sensor from Bosch is used. BME680
is a digital environmental sensor with a voltage range between 1.71V and 3.6V and a current
consumption of 2.1μA. CCS811 is a multi-pixel digital ultra-low-power air quality and gas tool
used to monitor eCO2 and TVOC. The main supply voltage range is between 1.62V and 3.6V , with
a maximum current consumption of 30mA. Additionally, the proposed embedded platform includes
an ultra-low-power CMOS image sensor, HM01B0. The image sensor supports a 320 × 320 pixel
resolution and a 320 × 240 windowed mode, with a power consumption of less than 2mW .

The embedded platform is designed with an ultra-low-power approach: It is capable of entering
the lowest power mode, where most components are switched off to conserve energy and to allow
for the elimination of leakage sources. That way, it is possible to totally cut off the microcontroller
and most sensors, leaving only the key monitoring elements active. In the lowest power mode,
the RV-3028-C7 Real-Time Clock (RTC) module is utilized to keep time and trigger system
restart regularly.

3.2 MCU Configuration

STM32L496VGT6P includes two different instructions that can be used to switch the power mode
into a low-power state: Wait-For-Event (WFE) and Wait-For-Interrupt (WFI). WFE uses the
value of the event bit from the System Control Block to wake up the MCU while in the WFI,
the MCU remains in sleep mode until an interrupt occurs. The implementation is based on
hardware interrupts, since they are supported by the sensors used. They allow the MCU to enter
low-power modes between processing cycles and thus to minimize the total power consumption.

For the active and inactive/sleep period of the MCU, there are eight different low-power modes.
Reference [41] presents a comparison between the modes in terms of wake-up source, enabled
components, and power consumption for an 1.8V input voltage.

In run mode, the implemented platform supports dynamic voltage scaling to optimize power
consumption. The CPU, as well as the Flash and SRAM memory, are enabled at a reduced frequency
of 2 MHz. In sleep and low-power sleep mode, the CPU is stopped while the peripherals remain
active. An interrupt or event can wake up the CPU. The stop 2 mode is used, where most of the
Vcore domain is put into a lower leakage mode to achieve the lowest power consumption while
retaining the content of both the SRAM and the registers.

When reading data from Flash, latency can be introduced by the system in the form of wait
states, depending on the frequency of the CPU clock and the internal voltage range of the device.
Also, the main regulator output voltage (Vcore) supports two modes that affect the total number
of wait states and the total power consumption. Range 1, or high-performance range, supports
a clock frequency of up to 80 MHz with a minimum Flash access time for reading. Range 2, or
low-power range, has a maximum clock frequency of 26 MHz and a longer reading time from the
Flash memory than Range 1. The correspondence between wait states and CPU clock frequency
is presented in Reference [41].

The Flash memory interface of the MCU includes a 256B data cache memory with 8 cache
lines of 4 × 64 bits each. When data is requested by the CPU, frequently used data lines can be
stored in the cache to accelerate code execution by enabling a data cache enable bit in the Flash
access control register. Moreover, the use of the cache memory for accessing the Flash memory
has no effect on the performance of the proposed implementation when there are no wait states.
However, according to Reference [40], the cache should lower the power consumption by up to
20%, since accesses to the cache require significantly less current compared to accesses to the Flash
memory.
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Fig. 1. Flow diagram of the methodology for fire detection and crowd counting.

STM32L496VGT6P can be supplied by an external Switched Mode Power Supply, bypassing the
internal regulator of the MCU and extending that way the power efficiency in run modes. More
specifically, a step-down DC-DC converter is used in the proposed embedded platform. The step-
down converter deactivates the integrated low-dropout regulator by generating a voltage for the
core that exceeds the internal voltage by 50mV or more.

3.3 Methodology

Figure 1 presents a flow diagram of the proposed system for fire detection and crowd counting.
The procedure begins with the microcontroller unit (MCU) and the two environmental sensors
being initialized and the static RAM being restored. The operating frequency of the MCU is 4 MHz.
After initialization, the gas sensor acquires equivalent calculated carbon dioxide (eCO2) con-
centration measurements every 10 seconds, while the MCU enters sleep mode with its interrupts
enabled. In sleep mode, the main regulator that supplies the core of the MCU is disabled and the
Flash memory is powered down while retaining the content of both SRAM and registers.

The system remains in sleep mode with the lowest power consumption until the concentration
of eCO2 exceeds a set threshold. In that case, an interrupt from CCS811 wakes up the MCU, while
input data for the temperature, humidity, eCO2, and total volatile organic compounds (TVOC)

sensors become available.
Since different gases are emitted during a fire (e.g., eCO2, carbon monoxide (CO), hydrogen

cyanide (HCN), O2, H2), a specific type of gas could be used as first indicator for reliable indoor
fire detection systems [12, 20]. The eCO2 levels were selected as a first indicator in case of fire, since
it is the primary gas emitted from complete combustion in smoldering fires, based on most recent
research [29]. Smoldering is a slow, flameless form of combustion that is started by heat sources
such as cigarettes, coal, or wires, and it is usually the first stage of a residential or office fire. It can
cause slow combustion of household items such as furniture, linens, and paper-based materials
that are found in a home or office space and it is difficult to be quickly detected by photoelectric
smoke detectors and fire alarms [29].

However, higher values in eCO2 than the set threshold could be an indication of poor air venti-
lation in the room and may lead to false alarms. Based on References [29] and [31], measurements
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of TVOC level can enhance the accuracy of a fire detection system and limit the false alarm pro-
duced by the eCO2 measurements. Additionally, based on Reference [15], high values of TVOC are
observed in case of fire with the gases influencing the TVOC value not including the eCO2.

During the execution of the fire detection process, interrupts are disabled to prevent the pro-
gram from being interrupted unexpectedly. When the execution of the fire detection process is
completed, the frequency of the MCU scales up to 80 MHz to execute the crowd counting method.

Clock sources can be changed safely on the fly in run mode through certain configuration reg-
isters. Initially, the system uses the multi-speed internal RC oscillator, which is trimmable by soft-
ware and is able to generate frequencies from 100 kHz up to 48 MHz. To utilize the maximum
clock speed of 80 MHz, a phase-locked loop of the system is required. The transition between the
two clock sources is performed by adjusting the flash latency and configuring the prescalers and
the multipliers of the clock tree accordingly.

After increasing the operating frequency, the MCU is ready to capture an image frame from the
area via the image sensor and subsequently to execute the proposed lightweight version of the
YOLOv5 algorithm. The frequency remains at the highest level until the crowd counting process
finishes. At that point, it is scaled back to 4 MHz. When a prediction of the total number of people
is available, the MCU returns to sleep mode, while the interrupts are enabled back.

The MCU wakes up periodically to execute the crowd counting sub-system on 5-minute inter-
vals and also when receiving a fire alert. The image sensor requires approximately 12 msec to
capture a frame, a short enough time to acquire a clear frame before everyone starts to panic and
run to the exit. However, a chaotic situation can occur before the detection process has started;
in that case, images with significant motion blur can be potentially captured and thus the crowd
counting subsystem will not be able to detect the total number of people with high enough accu-
racy. In that case, the system will report the total number of people occupying the room as retained
from the previous execution of the model.

4 PROPOSED SYSTEM AND METHODS

4.1 Fire Monitoring and Detection Sub-system

A low-complexity and high-efficiency model based on the MLP neural network was implemented
for fire detection. The model is called “Chain of MLP models” and was introduced in Reference [31].
It consists of five inputs: temperature, humidity, eCO2, TVOC, as well as the output from the
previous execution of the MLP model. Different numbers of hidden layers and neurons have been
evaluated for the implementation, as presented in Section 5.2. In the hidden layers, the rectified
linear unit was used as an activation function, as it had the best convergence performance. For
the output layer, the sigmoid function was used, as it was a supervised classification problem with
only two values: zero for no fire and one for fire.

Thus, the chain of MLP models uses as a feature the output from the previous state together with
the environmental sensors’ data from the current state. The process is described by the following
equation:

OutMLPt = MLP (OutMLPt−1,Tt ,Ht , (CO2)t ,TVOCt ), t ≥ 1, (1)

where T is the temperature, H the humidity, and t the number of the previous states or timesteps.
The length of the MLP chain is proportional to t and is defined by the timesteps. Figure 2 illus-

trates the partial autocorrelation function (PACF) plot for the final decision of the MLP model
for the first 15 lags. The PACF is a description of the relationship between an observation in a
time series and observations at previous timesteps, with any intervening observations being elimi-
nated. As observed, until lag 3 there is highly significant with the highest values being observed on
lag 1.
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Fig. 2. PACF plot with 15 lags.

The relationship between accuracy and the number of timesteps is detailed in Reference [31].
Four timesteps have been selected for the proposed system, since in that case the highest change
of value was achieved in terms of accuracy. Furthermore, based on the PACF, the previous three
values appear to have the biggest impact on the final decision. The model becomes slightly
more accurate, as additional MLP models are used, but with a significantly longer execution
time.

Furthermore, using the prediction of the previous state as an input to the next state could reduce
the overall performance of the model, as a prediction error is entered. Nonetheless, false predic-
tions from the previous state in combination with data from environmental sensors of the current
state do not appear to affect the overall performance of the model.

4.2 Crowd Counting Sub-system

For the crowd counting sub-system, a custom lightweight version of the original YOLOv5 object
detection algorithm was developed, aiming for real-time results using a low-power embedded
platform.

4.2.1 YOLO. The YOLO algorithm is commonly used in object detection problems [33]. It is
utilized as an alternative to popular two-stage approaches, and it handles object detection as a
regression problem rather than a classification problem by using a single neural network. YOLOv5
utilizes convolutional neural networks as a backbone, with the Darknet architecture being replaced
with PyTorch [21]. It uses PANet as neck and multi-scale features, which consist of several bottom-
up and top-down layers. The main differences between YOLOv5 and previous versions are the
significantly smaller model size, faster inference, as well as better accuracy.

4.2.2 YOLOv5 Modifications. This section summarizes the modifications applied to the original
version of YOLOv5. The aim of the modifications was to reduce the total memory footprint of the
algorithm while maintaining its accuracy.

• The CSPDarknet53 network was replaced by lightweight architectures based on Shuf-
fleNetV2, as detailed in Section 4.2.3.
• The total number of detection layers was reduced to minimize the total size of the output

vector, as detailed in Section 4.2.4.
• The total size of PANet was reduced, while the activation function was replaced from Sig-

moid Linear Unit (SiLU) to Rectified Linear Unit (ReLU), as detailed in Section 4.2.5.
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Fig. 3. The proposed LW-YOLOv5 network architecture.

• Grayscale images were used to train the custom YOLOv5, reducing the total input size from
three channels to a single one and subsequently the algorithm’s overall size. More details
are given in Section 5.1.2.

4.2.3 ShuffleNetV2. ShuffleNet is an efficient convolutional neural network architecture that
focuses on a lightweight architecture for embedded devices [51]. It utilizes pointwise group con-
volution layers and channel shuffle operations to reduce computation costs while maintaining ac-
curacy [25]. In pointwise convolution, a 1 × 1 kernel is used, which means that the kernel iterates
through every single point [16].

ShuffleNetV2 is an improvement over V1 in terms of execution time and computational com-
plexity [26]. The most significant differences between the two algorithms are: the replacement of
group convolutions with a new channel split operation, which splits the channels into two groups,
the replacement of the group convolution layers with convolution layers, the replacement of the
addition operation with concatenation, since addition is relatively expensive operation with a sig-
nificant number of memory accesses. The channel shuffle remains the same in the second version
of the algorithm, but it has been moved to the end of the architecture.

4.2.4 Anchor Boxes and Detection Layer. YOLO can work very well on multiple-object detection
problems even if the objects are contained in the same grid using anchor boxes. Anchor boxes are
a set of predefined boxes with a specific height and width that are used to capture the scale and
aspect ratio of objects to be detected. The k-means clustering algorithm is used to define the best-
fit anchor boxes. In the proposed implementation of this article, 3 anchor boxes were used based
on the number selected by the authors of the original YOLOv5.

Detection layers are used to perform dense predictions consisting of a vector containing the
predicted bounding box coordinates (center, height, width) along with the confidence value and
the probability classes. Three detection layers were included in the initial model presented by the
authors of YOLOv5. To reduce the total memory requirements, two different variations with one
and two detection layers were used in the proposed implementation.

4.2.5 Network Architecture. In Figure 3(a), the proposed lightweight YOLOv5 (LW-YOLOv5)

network architecture is presented. The main parts are the Backbone, Neck, and Output layer, as
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Fig. 4. Converting a PyTorch model to TFLM.

in the original algorithm. Additionally, the algorithm includes the C.B.R. block, which consists
of a Convolution layer, Batch normalization layer, and a ReLu function. This block can be found
in the Backbone as well as in the Neck layer. In Backbone, it is used to replace the original
Focus layer in YOLOv5, reducing the execution time and the total size in RAM, while in Neck
it is used before the final output. Finally, the SiLU function of the original YOLOV5 algorithm
is replaced with ReLU, as SiLU is not quantization-friendly and not well-supported in embedded
devices.

In Figure 3(c), a C3 block is presented. It is inspired by DenseNet [17] but instead of combining
the entire input and output after CNN layers, the input is split into two parts. The first part is
passed through a C.B.R. block as well as a number of Bottleneck blocks, while the second only
through a C.B.R. block. Then, the two outputs from the two parts are concatenated, followed by
another C.B.R. block.

As mentioned in Section 4.2.4, the total number of the detection layers was two and one in the
proposed LW-YOLOv5. The size for each detection layer is displayed in Figure 3(d). Additionally,
the output dimensions for each detection layer were 20× 20× 16 for the first (P1) and 10× 10× 16
for the second (P2).

4.3 PyTorch Model Conversion

TensorFlow Lite Micro (TFLM) is an open-source machine learning inference framework that
can be used to run deep learning models on embedded platforms [8]. The proposed model was
developed in the PyTorch framework, similar to the original YOLOv5, and was subsequently con-
verted to a TFLM model before loaded to the embedded platform.

Figure 4 presents the conversion process from PyTorch to TFLM. Initially, the PyTorch model
was exported in the Open Neural Network Exchange format. hen, the exported model was con-
verted to Intermediate representation (IR) using Open Visual Inference and Neural net-

work Optimization (OpenVINO). Finally, the exported OpenVINO IR model was converted to
TensorFlow using a script from Reference [18], a quantization method was applied, and then it
converted to TFLM. The script converts the exported IR model to TensorFlow representation with-
out converting the NMS block, as there are no operations in TFLM for this block. Thus, a custom
version of the NMS algorithm was developed in C without any machine-dependent optimizations
or special instructions.

4.4 Quantization

Quantization reduces the number of bits used to store the values of weight and activation func-
tions of ANNs, converting floating-point values to fixed-point integers. The operations between
weights are faster but at the expense of the model’s accuracy. Thus, there is a tradeoff between the
number of bits that represent weights and the accuracy of the model, and some information may
be lost [34].
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There are two different methods for neural network quantization, Post-Training Quantiza-

tion (PTQ) and Quantization-Aware Training (QAT) [28]. The main difference between PTA
and QAT is the stage where the scale is computed. In PTQ, the quantized model is computed after
the network has been trained and typically restricted to FP16 or INT8 quantization. In QAT, the
quantized model is computed during the training phase, keeping significantly more accuracy in
the results than PTQ [22]. QAT methods have been tested on classification models using 4 bits per
neural network weight and 8 bits per activation [4]. However, low-bit quantization is much more
difficult to apply to object detection problems and achieve accurate results.

QAT was applied in this article, in the TensorFlow file. Currently, TFLM supports computation
on both floating-point in binary32 format and fixed-point on 8-bit integers [30]. Thus, 8-bit was
selected for quantization, as it was the lowest supported value. However, experimentation with
different quantization sizes can also be performed. Finally, symmetric quantizers were used for
the weights and asymmetric for the activation function of the model.

5 EXPERIMENTAL RESULTS

This section includes the different datasets used during the training and evaluation phases as
well as the model performance analysis of the two proposed models and their overall energy
requirements.

5.1 Datasets and Evaluation Metrics

5.1.1 Fire Detection. Two different datasets were used to evaluate the performance of the
proposed algorithm. The first dataset was created by the authors of this article. It contains
measurements using two environmental sensors (eCO2, TVOC, temperature, humidity) at regular
10-second intervals. The experiments were conducted in a naturally ventilated room, with dimen-
sions of 10m2, a temperature of approximately 23◦C , and a relative humidity of approximately 32%.
Different materials were used, which can be easily found in residential homes and office spaces, in-
cluding paper stacks, cardboard boxes, plastic wraps, wood from office desks, and electrical cables.
In each experiment, an electric heating device was used to start the fire. Approximately 8,500 data
points were collected in total, for temperature, humidity, eCO2, and TVOC and were divided into
training, validation, and test sets with a ratio of 70%, 10%, and 20%, respectively, within each event
class. The dataset was balanced as it contained equal instances from the fire and no fire classes.

The second dataset from Reference [29] contains data from eCO2, TVOC, temperature, and hu-
midity sensors, using as burning materials paperboard cardboards (paper with a plastic layer),
clothing (cotton fabric, denim fabric, a mixture of cotton and polyester), commercial bed sheet
and pillow sets. Two methods were used by the authors to start fire in each experiment; charcoals
and electric heating devices. A re-sample of the data was applied to a 10-sec interval to fit in the
presented method.

5.1.2 Crowd Counting. A set of images has been collected and annotated from two different
working areas at the Centre for Research and Technology Hellas (CERTH). In the first room,
containing between 0 to 4 people, the camera covered approximately 10m2. The second room was
part of the CERTH/ITI nZEB Smart Home, a real domestic building that is used to implement and
evaluate smart IoT-based technologies in different areas including energy, health, big data, robotics,
and artificial intelligence. The total covered area was approximately 15m2. In both datasets, there
were images that represent different actions of the employees (not wearing masks, wearing masks,
covering heads) and different lighting conditions (low-light conditions, normal conditions).

The input data from the image sensor had 320 × 240 resolution and was subsequently cropped
to 128 × 128, as Yolo is more efficient with square images. In total, 3,680 gray-scale images were
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Fig. 5. Images from two different indoor rooms.

used for training, 1,051 for testing, and 525 for evaluation. The total number of people in each set
was 11,040, 2,102, and 1,050, respectively. In Figure 5, two examples from the different rooms are
illustrated.

5.1.3 Evaluation Metrics. To evaluate the performance of the different fire detection models and
existing works, the accuracy, F1 score, and sensitivity metrics were used. F1 combines the precision
and recall of a classifier into a single metric. Sensitivity measures the ability of the model to predict
true positives of each class.

For the evaluation of the effect of the crowd counting model, three different metrics were
used: precision, recall, and mAP, with a confidence level of 0.5 and a range between 0.5 and
0.95. Average precision is a method of condensing the precision-recall curve into a single
number that represents the average of all precisions. The mAP is the average of AP. Additionally,
mAP(0.5) represents the mean average precision for Intersection over Union (IoU) = 0.5, while
mAP(0.5 : 0.95) is the averaged mAP for increasing IoU threshold values, from 0.5 to 0.95 by 0.05.
The formulas of previous metrics are displayed in Equations (2) and (3) below. TP (true positive)

implies that a head is detected, and heads exist in the actual image, FP (false positive) means
that heads are detected when there is no head in the actual image and FN (false negative) means
that no head is detected, although heads exist in the actual image.

precision =
TP

TP + FP
(2)

recall =
TP

TP + FN
(3)

5.2 Models Performance Analysis

In this section, the performance of the fire detection and crowd counting sub-system is presented.
The comparative analysis for the first component of the system was made using the following
evaluation metrics: accuracy, F1 score, and sensitivity, and for the second component: precision,
recall and mAP, as presented in Section 5.1.3.

5.2.1 Fire Detection Sub-system. The different experiments were conducted using the custom
dataset for the fire detection system, as well as the results from previous studies implemented
for fire detection, are presented in Table 1. Different model architectures were used, including 2
hidden layers with 60 and 30 nodes, called 1st architecture, 2 hidden layers with 120 and 60 layers,
called 2nd architecture, and 3 hidden layers with 120, 60, and 30 layers, called 3rd architecture.
Furthermore, three different model representation types were used: 32-bit, 16-bit, and 8-bit.

Regarding the 32-bit models, the best overall results in terms of accuracy, F1 score, and sensi-
tivity were observed in the 2nd and 3rd architectures with values reaching 99%. The sensitivity
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Table 1. Comparison of Models Implementation for Fire Detection

Model Architecture Accuracy F1 score Sensitivity Model Type
Exec. time

(msec)
Model size

(KB)
60 + 30 layers 0.993 0.987 0.985 FP32 123.7 10.341
60 + 30 layers 0.985 0.981 0.976 FP16 100.5 5.325
60 + 30 layers 0.931 0.916 0.848 INT8 6.68 4.745
120 + 60 layers 0.992 0.991 0.992 FP32 394.8 32.657
120 + 60 layers 0.989 0.990 0.990 FP16 256.8 12.222
120 + 60 layers 0.972 0.964 0.931 INT8 6.70 10.87
120 + 60 + 30 layers 0.993 0.996 0.996 FP32 479.6 39.802
120 + 60 + 30 layers 0.997 0.992 0.992 FP16 340.4 14.282
120 + 60 + 30 layers 0.974 0.975 0.942 INT8 6.80 13.191

Table 2. Comparison of the Best-proposed Model for Fire Detection Using Public

Dataset and Different Materials

Model Architecture Accuracy F1 score Sensitivity Model Type

electric fire 0.998 0.998 0.999 FP32
electric fire 0.996 0.997 0.996 FP16
electric fire 0.981 0.982 0.967 INT8

carton 0.995 0.996 0.998 FP32
carton 0.994 0.995 0.996 FP16
carton 0.983 0.982 0.978 INT8

clothing 0.997 0.997 0.999 FP32
clothing 0.996 0.996 0.994 FP16
clothing 0.979 0.982 0.981 INT8

was affected by an incorrect classification of class 1 (fire occurrences) values to class 0. Thus, a
high value in this metric is particularly important for system efficiency. The execution time of the
MLP chain for the 2nd and 3rd architecture was 394.8 msec and 479.6 msec , respectively. Similar
results were observed in all metrics, in the quantized models with 16-bit representation, with a
small reduction in execution time and model size, as expected.

In terms of the 8-bit models, the best overall results were observed in the 3rd architecture using
3 layers in each MLP model, with an accuracy of 98% and a sensitivity of 94%. As expected, the
variation with the fewest bits had a lower ability to separate the two classes, but with a smaller
size of the weights’ file. The execution time was 6.8msec , with a total model size of 13.191 KB.

Experiments were also conducted using the dataset described in Section 5.1.1. The performance
of the best model that came up from the above experiments was tested in three sources: an electric
fire source, a paperboard cardboards (carton) source, and a clothing source. Table 2 presents the
results of the proposed method. As can be observed, the results for each material and for model
types FP32 and FP16 were close to 0.99. Additionally, the performance of the proposed model using
INT8 as a model type was close to 0.9 in all metrics. Finally, since the models were identical to those
in Table 1, the model size and the execution time remained constant.

5.2.2 Crowd Counting Sub-system. Table 3 presents the results of the experiments, which were
conducted using variations from the proposed model and the literature. Different parameters
were used in terms of backbone, the size of Depth and Width of the backbone layer, and the
number of detection layers. The CSPDarknet was used in the literature models, whereas the
custom ShuffleNetV2 was used in the proposed models. Since models based on literature could
not be imported into the embedded platform, the PANet layer was reduced while the rest of
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Table 3. Comparison of the Proposed LW-YOLOv5 and Existing YOLOv5 Implementations (All Models

Are in an INT8 Format)

Detector Backbone Depth/Width P R
mAP
(0.5)

mAP
(0.95)

Exec. time
(sec)

Model
size (KB)

YOLOv5s (1 head) [21] CSPDarknet 0.15/0.15 0.969 0.979 0.975 0.723 187.5 595.4
YOLOv5s (2 heads) [21] CSPDarknet 0.15/0.15 0.978 0.969 0.995 0.759 295.2 904.1
YOLOv5s (1 head)(0.5 Focus) [21] CSPDarknet 0.15/0.15 0.973 0.979 0.975 0.716 138.2 528.2
YOLOv5s (1 head)(0.5 Focus) [21] CSPDarknet 0.20/0.20 0.973 0.979 0.975 0.722 259.2 842.5
YOLOv5s (2 heads)(0.5 Focus) [21] CSPDarknet 0.15/0.15 0.973 0.969 0.975 0.739 154.4 548.2
YOLOv5s (2 heads)(0.5 Focus) [21] CSPDarknet 0.20/0.20 0.973 0.979 0.975 0.755 278.1 854.6
our LW-YOLOv5 (1 head) ShuffleNetV2 0.15/0.15 0.951 0.969 0.970 0.585 16.8 88.47
our LW-YOLOv5 (1 head) ShuffleNetV2 0.20/0.30 0.957 0.965 0.966 0.602 43.5 171.2
our LW-YOLOv5 (1 head) ShuffleNetV2 0.50/0.50 0.969 0.976 0.975 0.632 92.2 439.5
our LW-YOLOv5 (2 heads) ShuffleNetV2 0.15/0.15 0.954 0.969 0.974 0.619 21.3 113.3
our LW-YOLOv5 (2 heads) ShuffleNetV2 0.20/0.30 0.969 0.979 0.976 0.634 55.2 219.5
our LW-YOLOv5 (2 heads) ShuffleNetV2 0.50/0.50 0.969 0.976 0.975 0.671 115.2 539.3

the architecture remained unchanged. The initial learning rate was 1e−2 and the final was 1e−4.
Additionally, all models were trained for 300 epochs and a batch size of 32.

As can be observed in Table 3, the models with two detection layers had better performance
in mAP(0.5) and mAP(0.5 : 0.95) in all cases, when compared to models with a single layer. The
addition of a second detection layer improves the model’s performance by allowing it to detect
objects of variable sizes. Regarding the proposed LW-YOLOv5, the model with two detection layers
and with depth and width values of 0.50 had the best overall results in terms of mAP, precision,
and recall. However, for a low-power system, the execution time was excessively long. Thus, the
model with two detectors and a 0.15 value for both depth and width (bold text) was chosen for
the crowd counting sub-system, as the mAP(0.5 : 0.95) value was reduced by 18% compared to the
best model, while the execution time was reduced by 92.78%.

Figure 6 presents two different types of loss: box loss and objectness loss. The box loss mea-
sures how accurately the algorithm can locate the center of an object and how well the predicted
bounding box covers an object. Objectness is a measure of the probability that an object exists in
a proposed region of interest. A high level of objectivity indicates a high probability of an object
being present in the image window. As can be observed, the model improved significantly in terms
of precision, recall, and mAP after 170 epochs and became stable after 200 epochs. The accuracy
of the model can be improved by adding more images from different indoor areas.

In comparison to the proposed method, the original YOLOv5 models had better performance
in terms of the mAP metric, as can be observed in Table 3. However, the most important aspect
of the work of this article is the quick inference of the object detection algorithms and the low
memory requirements. Thus, the original YOLOv5 model with the quickest execution time requires
138.2 seconds, which is roughly 18.15% longer than the slowest of all proposed models and 84.5%
longer than the fastest. The total memory requirements of the aforementioned original YOLOv5
model is 528.2 KB, which is nearly equal to the largest of all proposed models but 79% larger than
the smallest. Additionally, the accuracy of the smallest model derived from the literature was 14%
better for mAP(0.5 : 0.95) and only 0.1% for mAP(0.5) compared to the selected model.

5.3 Energy Requirements

The total power consumption can be defined as the sum of the power expenditure during the active
mode (data acquisition, processing, and inference of ML algorithms) and standby or sleep mode.
The load current and voltage were measured using a digital oscilloscope (RIGOL DS1074Z) [43].
Separate jumpers for each component (MCU, sensors) were used to allow for the measurement of
the supply currents. Moreover, shunt resistors have been imported in each component with values
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Fig. 6. Plots of box loss, objectness loss, precision, recall, and mean average precision (mAP) over the training

epochs and over the training and validation set of the proposed LW-YOLOv5 (bold line of Table 3).

such that the voltage does not fall below 1% of the supply voltage in all cases and therefore presents
an acceptably small perturbation. For the measurements, a 2.2V supply voltage was used.

The power consumption of each part in active mode is shown in Table 4. The MCU, the two
environmental sensors, and the image sensor are switched on, having a power consumption of
51.36 mW on average with a total energy cost of 1.13J . The most power-intensive process is the
execution of the LW-YOLOv5, with C3 layers being the most demanding part of it. Additionally,
the execution of the MLP chain, including in the fire detection sub-system, requires only 3.38e−5 J
and only 6.8 msec.

In standby mode, the MCU operates on 13.7 μA, while the CCS811 sensor consumes only 4.6mA
until the value of the eCO2 concentration crosses the threshold that has been set or the 10-second
interval has elapsed. In total, the power consumption in standby mode is 15.2 mW with a peak
value of 51.4mW every 10 seconds.

Figure 7, presents the aggregated power consumption of each component including the power
consumption of the MCU, the gas and environmental sensor, as well as the image sensor for
6 min (360.000 msec). Using a 3.7 V Li-Ion battery with 7,000 mAh (25.9 Wh) the system can
operate approximately for two months without any human intervention. In contrast, if the sys-
tem operated continuously at a maximum frequency of 80 MHz, without interrupts and using the
fastest model of the original YoloV5 (YOLOv5s (1 head)(0.5 Focus)), then the operation time would
be reduced to approximately 20 days.

The crowd counting sub-system will be compared to existing literature works, as there is no
similar low-power system in the literature as the proposed whole system. Compared to the existing
work [14] from the literature, the proposed method for crowd counting has better results in terms
of power consumption and execution time, with a slight decrease in accuracy. Thus, a reduction
in power consumption by 78.95% and 84.56% in execution time was observed.
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Table 4. Energy Breakdown in Run Mode

Task Energy (J) Exec. Time (msec)

Start-up, data
acquisition eCO2,
TVOC,T,H, &
capture a frame 0.097 ≈600

Execute chain
of MLP models 3.38e−5 Total: 6.8

• 4*MLP 4*8.471e−6 4*1.7
Execute
LW-YOLOv5 1.03 Total: 2,1271.88

• C.B.R. 0.053 1,108.82
• ShuffleNet 0.071 1,478.43
• ShuffleNet*3 0.062 1,293.63
• ShuffleNet 0.062 1,293.63
• ShuffleNet*3 0.088 1,663.24
• ShuffleNet 0.125 2,587.26
• ShuffleNet*9 0.071 1,478.43
• C.B.R 0.017 369.61
• C3 0.197 4,065.69
• C.B.R 0.008 184.80
• C3 0.125 2,587.26
• C.B.R 0.017 369.61
• C3 0.116 2,402.45
• Detect 0.017 369.61
• NMS 0.001 19.42

Fig. 7. Aggregated power consumption of the system for 6 mins.

6 CONCLUSIONS

This article presents an ultra-low-power fire detection and crowd counting system. For the fire
detection sub-system, environmental and gas sensor along with multilayer perceptron nodes
were used. For crowd counting, a custom lightweight version of YOLOv5 was introduced, using
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an architecture based on ShuffleNetV2, resulting in a model with low memory requirements,
high accuracy predictions, and fast inference on an embedded platform. When a fire incident
occurs, the system can send a notification to the fire department along with the total number of
people occupying an indoor area to manage the rescue of the trapped people more effectively.
Additionally, it can operate with the use of a battery autonomously for up to two months without
any charging and even in the case of a power outage.

The evaluation of the two sub-systems was made using custom and public datasets. Specifically,
the fire detection method was evaluated in two different datasets. The authors of this article created
the first dataset, and the second was based on a public dataset. The crowd counting method was
evaluated on a custom dataset created by the authors of this article and included data from two
different working areas. In the case of the fire detection sub-system, accuracy close to 97.4% was
achieved using the custom dataset and approximately 98% using the public dataset. The model
size of the best model (bold line of Table 1) was 13.191 KB and the execution time 6.80 msec. For
the crowd counting sub-system, the selected model (bold line of Table 3) had an mAP(0.5 : 0.95)
close to 61.9%, a model size 113.3 KB, and an execution time of 21.3 seconds. Finally, comparative
analyses with previous studies related to the crowd counting sub-systems were presented.

In terms of future work, regarding the fire detection sub-system, it will be interesting to inte-
grate a low-power CO sensor and compare the results with the approach suggested in this arti-
cle. Additionally, the development and use of a new gas sensor with reduced power consumption
would contribute to a better result. Regarding the crowd counting sub-system, more images for the
training phase from different indoor areas would be useful to collect and use. Moreover, it would
be interesting to use images from various scenarios during the training phase, such as chaotic
situations where people start running around when the alarm is sounded.
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