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Abstract—Correct identification of failure mechanisms is es-
sential for manufacturers to ensure the quality of their products.
Certain failures of printheads developed by Canon Production
Printing can be identified from the behavior of individual nozzles,
the states of which are constantly recorded and can form distinct
patterns in terms of the number of failed nozzles over time, and in
space in the nozzle grid. In our work, we investigate the problem
of printhead failure classification based on a multifaceted dataset
of nozzle logging and propose a Machine Learning classification
approach for this problem. We follow the feature-based frame-
work of time-series classification, where a set of time-based and
spatial features was selected with the guidance of domain experts.
Several traditional ML classifiers were evaluated, and the One-vs-
Rest Random Forest was found to have the best performance. The
proposed model outperformed an in-house rule-based baseline in
terms of a weighted F1 score for several failure mechanisms.

Index Terms—{feature engineering, time-series classification,
corrective maintenance, printing, nozzle log

I. INTRODUCTION

Identifying failure mechanisms is a critical part of industrial
corrective maintenance for manufacturers to ensure the quality
of their products [1]. Many manufactured systems are made
up of smaller components that can fail over time, eventually
causing entire system breakdown. By monitoring the condition
of these individual parts, unique patterns of wear and tear
can be uncovered, which can then be linked to potential
causes of failure. An example of this is the inkjet printheads
produced by Canon Production Printing (CPP) for high-
volume printing. The performance of these printheads depends
heavily on the individual drop-forming nozzles, whose failure
logging is constantly recorded. By analyzing nozzle failure
development patterns in time and space over the nozzle grid
from the logging data, failure mechanisms can be identified.
The CPP team has observed several distinct patterns of nozzle
failures that correspond to the failure mechanism of a complete
printhead. For instance, one pattern may show a scattered
combination of nozzle blockages, while another could reveal
a large number of neighboring nozzles failing simultaneously
due to an electrical issue.

To classify failures, manufacturers typically use two main
approaches: rule-based methods and algorithmic-based mod-
els. Rule-based methods rely on organizing domain knowledge
into a hierarchy of rules which produce classifications, while
algorithmic approaches are data-driven, often leveraging Ma-
chine Learning (ML) techniques [2]. Domain experts at CPP
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have developed an in-house rule-based classification model
to identify failure mechanisms from the terminal nozzle log
records based on expert knowledge and historical observations.
Thus, when the classifier makes incorrect predictions for new
data points, the rules need to be manually adjusted, or the
predictions must be overwritten by hand. In contrast, ML
models can automatically learn relationships between input
data and output labels, allowing them to generalize better to
unseen scenarios [1].

In this paper, we address a unique industrial challenge:
classifying failure mechanisms of printheads at their End-of-
Life (EoL) stage using a multifaceted nozzle logging dataset.
We propose an ML-based failure classification framework that
integrates both time-series and spatial aspects of the data.
Our approach builds on feature-based time-series classification
methods, adapted to this specific application in collaboration
with domain experts. Following extraction of useful features,
an optimal classifier was built by fine-tuning and evaluating
several traditional ML models and their One-vs-Rest (OVR)
variants. Our results have shown that the OVR Random Forest
(RF) model performed best, achieving an average weighted F1
score of 0.93 and reaching the human-level performance of the
in-house rule-based baseline model (hereafter, the baseline).

II. RELATED WORK

Industrial time-series classification datasets often focus on
general manufacturing or industry-specific cases, such as au-
tomotive or healthcare. These datasets typically consist of
conventional sensor readings capturing variables like vibration,
temperature, and motion [3]. A more complex case that
happens in industry is in the time-series of historic log records
such as sequences of error codes [4].

In contrast, our problem resembles the identification of
system failures based on the failure developments of its com-
ponents. This results in a time-series representing the count
information of how many component failures have been logged
for the whole system. Thus, this type of data is sometimes
formally referred to as the count time-series [5] to highlight the
difference between classical cases such as sensor-based. This
problem is not well studied in the ML literature, but is mainly
addressed with comprehensive statistical frameworks such as
FMEDA [6], which relies on the estimates of failure rates of
individual components. Moreover, existing research on CPP
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printheads has primarily addressed lifespan estimation [7],
while classification of printhead failures from nozzle logging
has not been studied yet.

Time-Series Classification (TSC) has become a critical tool
in modern industrial applications. It encompasses a variety
of methods, among which feature-based algorithms are high-
lighted as an effective approach [8]. Over the years, a wide
range of feature-based techniques has been developed, from
Shapelet-based like Fast Shapelets [9] to the hybrid state-of-
the-art approaches such as HIVE-COTE 2.0 [10]. Another
notable family of feature-based techniques focuses on sta-
tistical feature engineering. Recent frameworks like Tsfresh
[11] and TSFEL [12] automate feature mining and selection
using statistical tests, and they are particularly relevant for
multi-variate time-series problems. However, these methods
can be computationally intensive, as they often calculate a
large number of features, many of which may be irrelevant to
the specific problem [13].

III. METHODOLOGY
A. Nozzle logging and failure mechanisms of printers

Typically, when printheads fail, it is possible to establish the
associated failure mechanism based on the physical state or the
error logging of that printhead. When several printheads fail
for unknown reasons but exhibit similar nozzle log activity,
it can be assumed they have the same failure mechanism. A
printhead’s nozzle log consists of several components among
which one can find the status of individual nozzles according
to Nozzle Failure Classification (NFC), which indicates that
the nozzle does not jet the ink properly. If a nozzle is
not behaving correctly, then it is assigned one of the five
status labels Nozzle Failure [1-5] (NF[1-5]). The labels are
anonymized to preserve the privacy of the internal terminology
of CPP.

Formally, a nozzle log of a printhead is a time series 7
which is defined as a sequence of log records:

Ti={xV x®  xm 1)

Where 7 is the total number of log records and ¢ indexes the
specific printhead. Each time series 7 of a removed printhead
is associated with a corresponding failure mechanism label *.
Each log record, X*), captures the state of the printhead’s
512 nozzles at a time-step ¢. The nozzles are arranged in four
rows of length 128 resulting in a matrix with dimensions 4 x
128. Each matrix entry indicates the state of a nozzle, where
NFI1—5] and 0 denote possible NFC states:

X® e {NF1,NF2,NF3,NF4, NF5,(}**128,
Vie{1,2,....,n} (2)

Alternatively, each log record X(*) can be viewed as a 5-
channel image of size 4 x 128 x 5:

X® e {0,1}125 vt e {1,2,... n}. (3)

In this representation, 4 and 128 denote spatial dimensions of
an image, corresponding to nozzle layout, while 5 represents
the number of channels. Each channel is a binary grid indi-
cating whether a nozzle is in one of the five possible statuses
NF[1—5] at a time-step ¢. This representation allows to view
nozzle log records as images, as illustrated in Fig. 1, enabling
visual identification of patterns. The grid plot on the left of
Fig. 1 represents the full terminal record. The time-series on
the right illustrates developments of the number of NFCs over
time aligned over the last 100 print jobs of a printhead. Each
timestamp corresponds to the count of NFCs in the first nozzle
log record of a print job while the color indicates the NFC

type.

B. Dataset

The dataset used in this case study consists of 411 print-
heads, which were removed from printers in the field due to
failures in the nozzle log. The printheads in the dataset are
categorized into six failure mechanisms of Pattern[1-5] and
Pattern 1&2. The class distribution in the dataset is heavily
imbalanced, as the most populated class Pattern I accounts
for 121 samples, while the least populated class Pattern 5 has
only 23. Classes of Pattern 1 through Pattern 5 correspond
to the failure mechanisms that can be clearly identified from
the patterns in the nozzle log data. Cases that do not fit these
patterns are grouped under a general Other category, which
includes printheads with sparse logs or atypical behaviors that
lack sufficient data to constitute a separate class. The dataset
also contains six printheads that exhibit characteristics of both
Pattern 1 and Pattern 2. While these instances could be treated
as edge cases, we adopt a multi-label classification approach
and include them as valid samples for both respective classes.

Class labels were assigned by the domain experts at CPP
through a multi-stage process. Initially, failure mode pre-
dictions were generated using the in-house baseline model.
Predicted labels were then verified by the domain experts,
which involved a manual inspection of the terminal nozzle
log record, usage history of each printhead and time-series
information of NFC developments. Eventually, any incorrectly
predicted labels were manually reviewed to ensure accuracy.

C. Model design

1) Data extraction and representation: A significant por-
tion of the raw nozzle log may be superfluous, since new
records are added with a high frequency, while NFC state
is unlikely to change that rapidly. Additionally, raw nozzle
log data poses challenges for storage and increases the time
and space complexity of classification algorithms. Thus, when
extracting raw nozzle log from the database (denoted as DB in
Fig. 2), the data is sampled such that only the first record of
every print job is considered. To obtain count time-series data
from the nozzle log, the number of failed nozzles per NFC
type is taken from each time-step, transforming 7 into 7.
This results in a dataset of multi-variate time-series where each
channel contains the count information of a specific nozzle
failure type, as illustrated in Fig. 1.
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Fig. 1: Example of a pattern in the nozzle log.
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Fig. 2: Overview of the modeling framework.

Next, we use Tsfresh Python package [11] as it allows the
extraction of various features from time-series. Out of the
60 time-based feature functions provided by Tsfresh, only 11
were selected based on a combination of domain expertise and
empirical evaluation. The chosen features capture key charac-
teristics such as linear trends, autocorrelation, complexity, and
other relevant statistical properties.

In addition to the Tsfresh-based features, seven custom
functions were introduced to capture complementary aspects
of the time series. These include the first and second deriva-
tives, the final value of the time series, and the maximum dif-
ference between consecutive samples. The choice of these fea-
tures was strongly guided by CPP domain experts. Derivative-
based features enhance the model’s ability to distinguish subtle
temporal variations, while the final value is critical as it plays
a central role in the decision-making logic of the baseline
model.

Finally, space feature functions were added to extract prop-
erties from the terminal nozzle log state of printheads. Two
such functions were added: the average position of failed
nozzles per NFC and the number of consecutive NF4s from
the edge of a grid. Overall, 20 time-based feature functions
were parameterized and applied to the nozzle log, resulting in
430 numeric features per instance of a failed printhead.

2) Development of an optimal classifier: Initially, an exten-
sive set of ML models available through the scikit-learn library
was evaluated with the pycaret package. Based on evaluation

results, it was decided to proceed with the RF, Logistic
Regression (LR), Extremely Randomized Trees (ET), Decision
Tree (DT) and K-Nearest Neighbors (KNN) methods, as well
as with Support Vector Machine (SVM) with a Radial Basis
Function (RBF) kernel. For each of these methods, a pipeline
of imputation, standard scaling and feature selection was used.
To discard irrelevant features and improve generalization, a
model-based feature selection procedure was employed using
a linear kernel SVM with a tight regularization coefficient
of 0.01. These components of the modeling framework are
represented by the blue rectangle in Fig. 2.

Finally, the problem was transformed into a multi-label
classification setting, as a handful of samples exhibited both
Pattern 1 and Pattern 2 failure mechanisms at the end of their
lifetime. To allow predicting multiple labels, classifiers were
adapted to the OVR framework. Specifically, a separate binary
classifier is trained for each class against all others, and the
final decision is obtained by combining their outputs.

IV. EVALUATION
A. Evaluation procedure and metrics

Due to the imbalanced dataset and a limited number of
samples for several classes, all of the comparisons between
the models and training settings were performed using the
leave-one-out cross validation (LOOCV) framework. After
the split-wise predictions were obtained, the precision, recall
and F1 scores were subsequently calculated. Precision can
be interpreted as the ratio of correctly predicted samples
over the total number of predictions, while recall corresponds
to the ratio of true samples that were accurately classified.
The F1 score aggregates these two values with a harmonic
mean, providing an overall outlook on the performance of
the model. For the evaluation of multi-labeled classifiers, it
is necessary to properly average out the scores according to
one of the strategies, namely micro-average, macro-average,
and weighted-average. We used weighted-average as this type
of averaging is particularly suitable for classification problems
with class imbalance as it ensures a fairer evaluation.

B. Results

1) Selection of the highest performing ML model: To
identify the best performing ML model, the hyperparameters
for each classifier were tuned using a 10-fold cross validation
procedure. Next, the LOOCV performance was assessed for
each of the models with the weighted scores being summarised
in Table I. Since the primary focus of this experiment is on
discriminating between the five well-defined failure patterns,
the weighted averages were computed by excluding the Other



TABLE I: Evaluation results of the tuned ML models.

Model Prec. Rec. F1

RF 0.9318 0.9513 0.9410
LR 0.9201 0.9294 0.9242
KNN 0.8366 0.8394 0.8369
DT 0.8077 0.8881 0.8428
ET 0.9355 0.9440 0.9392
SVM 0.9170 0.9367 0.9266

class from the evaluation. As it can be observed from the
Table I the Random Forest consistently outperforms other
classifiers in terms of the F1 score and recall. Based on these
findings, a Random Forest model with 50 trees, a maximum
depth of 20 and the Gini impurity criterion was selected for
use in the subsequent round of experiments.

2) Evaluation of an optimal ML classifier against the rule-
based baseline: Following the identification of the optimal
classification model in the initial experiment, it is now possible
to compare the performance of the developed classifier to the
baseline on the full dataset. While direct comparisons between
rule-based and ML methods are typically inappropriate due to
their fundamentally different algorithmic approaches, such a
comparison is justified in this case. The rule-based baseline,
developed by domain experts, establishes a higher validation
boundary than a random classifier. Furthermore, the absence
of ML baselines for this specific problem makes the rule-based
approach a reasonable benchmark against which our model’s
performance can be evaluated.

The evaluation scores summarizing the performance of the
baseline and ML model are presented in Table II. From the
results, it is evident that the ML model clearly outperforms
the baseline in predicting Pattern 2, Pattern 4, and Pattern
5 as reflected in terms of the F1 scores. These findings are
further supported by the confusion matrices in Fig. 3. Note
that because OVR classifiers may output multiple predictions,
the raw sums can exceed the actual class support values.
However, this does not undermine their usefulness for com-
paring class-wise prediction tendencies. At the same time, the
baseline demonstrates strong superiority in predicting Pattern
3 failures and performs slightly better for Pattern 1, while the
ML model almost reaches its recall at 0.96. For Pattern 2,
the ML model has a higher precision of 0.95, however the
baseline outperforms its recall with an almost perfect score of
0.99. Finally, in terms of overall misclassifications, the ML
model demonstrates improved performance, with 31 incorrect
predictions compared to 39 from the baseline.

3) Feature importance in class predictions: The use of a
Random Forest model as the primary classification approach
allows for clear interpretation of feature importance through
the Gini index. By analyzing the top 10 features for each class,
we gained insights into the model’s decision-making process.
Notably, custom features created with domain knowledge, such
as the number of consecutive NF4s, maximum differences
and derivatives, were among the most relevant for predicting

TABLE II: Classification report of the rule-based baseline and
OVR Random Forest model for the five common output labels,
transformed into multi-label problem.

Model Prec. Rec. F1  Support

Pattern 1  Baseline 093 098 0.95 127
OVR RF 090 096 0.93

Pattern 2 Baseline 0.80 0.99 0.89 75
OVR RF 095 093 094

Pattern 3  Baseline 1.0 1.0 1.0 30
OVR RF 080 093 0.86

Pattern 4  Baseline 076 073 0.75 26
OVR RF 1.00 0.85 0.92

Pattern 5 Baseline 0.92 0.52 0.67 23
OVR RF 095 0.87 0091

Other Baseline 0.97 1.00 0.99 136
OVR RF 096 093 0.94

Weighted Baseline 091 095 093 417

average OVR RF 093 093 093

Pattern 2. Similarly, for Pattern I, maximum differences and
linear trend features derived from domain expertise were
given the highest importance scores. In addition, domain-
informed features also played a significant role for the correct
classification of Pattern 4.

C. Discussion

The results from the first experiment indicate that the
Random Forest model demonstrates superiority in terms of
F1 score and recall, likely due to its ability to learn non-linear
decision boundaries through ensemble learning. The LR and
SVM models perform similarly well, possibly benefiting from
the well-designed set of features. In contrast, DT and KNN
exhibit the worst performance, likely due to overfitting and
poor generalization on the small dataset.

In the main experiment of this study, the shortcomings of the
rule-based model were clearly summarized in the classification
report for its predictions in Table II and in the confusion
matrices on Fig. 3. The performance drawbacks mainly stem
from the high number of False Positives (FPs) for Pattern 2
and the high number of False Negatives (FNs) for Pattern 5.
This indicates that the baseline algorithm has a simple criterion
for assigning Pattern 2 and struggles to detect many instances
of Pattern 5. Additionally, a relatively high number of FNs is
present for Pattern 4.

It was demonstrated that an ML classifier outperformed the
baseline in terms of the number of misclassified samples and
achieved a comparable performance in terms of the weighted
F1 score. Key limitations include struggles with the class
Other, as the 10 instances of this class were misclassified.
Additional confusions occurred between Pattern I and Pattern
2 classes, which even domain experts find hard to distinguish.
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Fig. 3: Confusion matrices of prediction results of the rule-
based baseline model and proposed ML model across common
output labels.

Errors also arose for the Pattern 3 samples where nozzle
log was mostly empty and only several failure records were
present at the terminal stage of the printhead’s lifespan, sug-
gesting that time-based feature functions could not adequately
capture such edge cases. This highlights the need for further
refinement of features, though some cases remain challenging
to discriminate even for domain experts.

The feature importance scores retrieved for the Random
Forest model provided a valuable insight that most of the
custom features designed with the domain knowledge were
important for predicting the Pattern I, Pattern 2 and Pattern
4 classes.

V. CONCLUSION

This study has addressed the problem of classification of
failure mechanisms of CPP’s printheads caused by errors in
nozzle logging highlighting the importance of synergy between
data-driven approaches and domain knowledge in industrial
corrective maintenance. An ML classifier was successfully
developed and demonstrated to outperform the rule-based
baseline for specific failure patterns, reaching an overall F1

score of 0.93. It was determined that OVR RF performed best
across evaluated models and exceeded the predictive perfor-
mance of rule-based baseline with respect to three out of five
classes. It was determined that the problem of multi-variate
count time-series classification in the context of limited data
can be effectively addressed by transforming each individual
time-series into a fixed-length feature vector using time-based
feature functions. The proposed classification framework and
feature engineering approach are relevant for analyzing similar
systems of multiple small parts prone to failure or degradation
over time.
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