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1. INTRODUCTION

The expansion of imaging, graphics and multimedia often requires the use of string
matching to higher than one dimension leading to the two- and multidimensional
pattern matching problem were input strings and patterns of two or more dimensions
are involved. The two-dimensional pattern matching problem can be defined as follows.

Definition. Given an input string T = t0,0 . . . tn1−1,n2−1 of size n1n2 and a pattern
P = p0,0 . . . pm1−1,m2−1 of size m1m2 over a finite character set �, the task is to find all
occurrences of the pattern in the input string. More formally, find all pairs i1, i2, where
0 ≤ i1 < n1 − m1 + 1 and 0 ≤ i2 < n2 − m2 + 1 such that for all j1, j2, where 0 ≤ j1 < m1
and 0 ≤ j2 < m2, it holds that ti1+ j1,i2+ j2 = pj1, j2 .

The 2D pattern matching problem has many applications, especially in image pro-
cessing. It is used for content based information retrieval from image databases, image
analysis, and medical diagnostics. It is also used by some methods of detecting edges,
where a set of edge detectors is matched against a picture and by some OCR systems
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[Polcar and Melichar 2004]. The use of pattern matching is also important in areas like
motion analysis, cartography, aerial photography, remote sensing, document analysis,
and object tracking.

The solution to the two-dimensional 2D pattern matching problem differs if the
algorithm used is online, where the input string is not known in advance and only the
pattern is preprocessed, or offline, with both the pattern and the input string being
preprocessed. This paper focuses on online algorithms and on the exact case where the
pattern must be located as it is (i.e., without approximation) in the input string. The
algorithms presented in this article can easily handle rectangular arrays where each
dimension has a different size, but for the sake of simplicity only square arrays are
considered for both input string and pattern, where n1 = n2 = n and m1 = m2 = m.
For data that involve irregular shapes or for problems that include approximation
[Baeza-Yates and Perleberg 1992], rotation [Amir et al. 2006; Fredriksson et al. 2002],
or scaling [Amir et al. 1992], different algorithms can be used.

Baker and Bird [Baker 1978; Bird 1977] and Baeza-Yates and Regnier [1993] are
regarded to be among the most efficient two-dimensional pattern matching algorithms.
They both handle the two-dimensional pattern matching problem as a special case of
multiple pattern matching, where the two-dimensional pattern array is considered
as a finite set of different patterns. To preprocess the pattern and locate all of its
occurrences in the input string, the automaton of the Aho-Corasick algorithm [Aho
and Corasick 1975] is used, a data structure that is considered by many as inefficient
(i.e., Crochemore and Rytter [1994] refers to the efficiency of Aho-Corasick as not
entirely satisfactory). This article presents efficient variants of the Baker and Bird
[Baker 1978; Bird 1977] and the Baeza-Yates and Regnier [1993] algorithms that use
the Set Horspool [Navarro and Raffinot 2002], Wu-Manber [Wu and Manber 1994], Set
Backward Oracle Matching [Allauzen and Raffinot 1999] and Multipattern Shift-Or
with Q-Grams (SOG) [Salmela et al. 2006] multiple pattern matching algorithms in
place of the Aho-Corasick algorithm to perform two-dimensional pattern matching.
The Karp-Rabin [Karp and Rabin 1987] and the Zhu and Takaoka [1989] algorithms
were also considered but were omitted, as previous studies (i.e., Kouzinopoulos and
Margaritis [2009]) showed that they were not as efficient for two-dimensional pattern
matching when compared to Baker and Bird and Baeza-Yates and Regnier. The specific
multiple pattern matching algorithms were chosen because they are efficient and are
frequently encountered in other research papers. Set Horspool [Navarro and Raffinot
2002] is a classic algorithm that has a sublinear search phase in the average case.
Commentz-Walter [1979], the multiple pattern matching algorithm upon which Set
Horspool is based, is substantially faster in practice than Aho-Corasick, particularly
when long patterns are involved [Watson 1995; Wu and Manber 1994]. Set Backward
Oracle Matching also has a sublinear search phase in the average case. It appears
to be very efficient when used on large pattern sets and has the same worst case
complexity as Set Backward Dawg Matching but uses a much simpler automaton
and is faster in all cases [Navarro and Raffinot 2002]. The Wu-Manber algorithm was
chosen as it is considered a very fast algorithm in practice [Navarro and Raffinot 2002].
Finally, Salmela-Tarhio-Kytöjoki is a recently introduced family of algorithms that has
a reportedly good performance on specific types of data [Kouzinopoulos and Margaritis
2010]. SOG has a linear search phase in the average case.

A survey of algorithms for exact, approximate, scaled and compressed two-
dimensional pattern matching was presented in Amir [1992] and Crochemore and
Rytter [2002]. The Baeza-Yates and Regnier [1993] algorithm was introduced in 1993,
and its running time was compared to the Brute Force, Zhu and Takaoka and the Baker
and Bird algorithms for a randomly generated pattern and input string with a binary
alphabet. The pattern had a size of m = 2 to 20, while the input string had a size of
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n = 1,000. For the specific problem parameters, it was shown that Baeza-Yates and
Regnier was the fastest algorithm for all pattern sizes except for m = 2, where the
Brute Force algorithm had the best performance. The same paper also suggested that
the use of a multiple pattern matching algorithm based on Boyer-Moore [Boyer and
Moore 1977] instead of Aho-Corasick should result in the improvement of the searching
phase of the Baeza-Yates and Regnier algorithm. This motivated us to introduce the
variants of the Baker and Bird and the Baeza-Yates and Regnier algorithms presented
in this article. The Baker and Bird algorithm was detailed in Crochemore and Rytter
[1994], while Tarhio [1996] introduced a two-dimensional pattern matching algorithm
based on Boyer-Moore and compared it to the Naive and the Baeza-Yates and Regnier
algorithms for a binary alphabet data set where the pattern had a size of m = 2 to 64
and the input string had a size of n = 1,000. In that article, it was shown that the Brute
Force algorithm was the best for a pattern of a size up to m = 5 while for larger pattern
sizes, the newly introduced algorithm was preferable. The subject of exact, scaled and
approximate two-dimensional pattern matching was discussed in [Apostolico and Galil
1997]. The Baker and Bird and the Baeza-Yates and Regnier algorithms were detailed
in [Tao 2005]. Finally, a variant of the Baker and Bird algorithm that uses solely finite
automata was introduced by Zdarek [2010].

2. PATTERN MATCHING ALGORITHMS

Baker and Bird and Baeza-Yates and Regnier are two of the most well-known algo-
rithms for exact online two-dimensional pattern matching. They treat each of the m
rows of the pattern as a different pattern p0, p1, . . . , pm−1 from a finite pattern set P,
turning in practice two-dimensional pattern matching into a multiple pattern match-
ing problem. To preprocess the pattern and then scan the input string to locate all the
positions where it occurs, Baeza-Yates and Regnier uses the Aho-Corasick algorithm,
while Baker and Bird combines the Aho-Corasick and the Knuth-Morris-Pratt [Knuth
et al. 1977] algorithms.

2.1. Aho-Corasick

Aho-Corasick is an extension of the Knuth-Morris-Pratt [Knuth et al. 1977] algorithm
for a set of patterns P. It uses a deterministic finite state pattern matching machine; a
rooted directed tree or trie of P with a goto function g and an additional supply function
Supply. The goto function maps a pair consisting of an existing state q and a symbol
character into the next state. It is a generalization of the next table or the success link
of the Knuth-Morris-Pratt algorithm for a set of patterns where a parent state can
lead to its child states by σ where σ is a matching character. Each state of the trie is
labeled after a single character of a pattern pr ∈ P. If L(q) denotes the label of the path
between the initial state and a state q, then L(q) is also a prefix of one of the patterns.
For each pattern pr, there is a state q such that L(q) = pr. This state is marked as
terminal and when visited during the search phase indicates that a complete match of
pr was found. The supply function of Aho-Corasick is based on the supply function of
the Knuth-Morris-Pratt algorithm. It is used to visit a previous state of the automaton
when there is no transition from the current state to a child state via the goto function.

The goto function and the supply function are constructed during the preprocessing
phase. To build the goto function, the trie is depth-first traversed and extended for each
character of the patterns from a finite pattern set P at the same time the outgoing
transitions to each state are created. The supply function is built in transversal order
from the trie until it has been computed for all states. For each state q, the supply link
can be determined based on the longest suffix of L(q) that is also a prefix of any pattern
from P. Assume that for the parent state qparent of q, g(qparent, σ ) = q. If Supply(qparent)
also has an outgoing transition to a state h by σ , then the supply state of q can be set
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to h. In any other case, Supply(Supply(qparent)) must be checked for a transition to a
state by σ and so on, until one such state is found or it is determined that no such state
exists; in that case, the supply state of q is set to the initial state.

Let ui−1 be the longest suffix of the input string t0 . . . ti−1 that is also a prefix of any
pattern ∈ P. The character σ located at position i of the input string is scanned next. If
there is an outgoing transition from the current state q to another state f , as indicated
by the goto function, then L( f ) = ui−1σ is the new longest suffix of the input string
at position i that is a prefix of one of the patterns. A match of a pattern exists in the
input string if |ui−1σ | = m. If, on the other hand g(q, σ ) = f ail, then g(Supply(q), σ )
is checked for an outgoing transition by σ . If g(Supply(q), σ ) leads to a state f ′, then
ui−1 = L( f ′). If g(Supply(q), σ ) = f ail, then g(Supply(Supply(q)), σ ) is considered and
so on, until an outgoing transition by σ is found or until the supply state of the initial
state is reached; in that case, the search will start again from the initial state. The
construction of the goto function of the Aho-Corasick automaton is given in Algorithm 1,
the computation of the supply function is presented in Algorithm 2, while the search
phase of the Aho-Corasick algorithm is detailed in Algorithm 3. The output function
returns L(q) for each terminal state q and is denoted as Output(). A transition that
does not point to a state is denoted as f ail. An in-depth analysis of the Aho-Corasick
algorithm is presented in Navarro and Raffinot [2002].

ALGORITHM 1: The construction of the goto function g of the Aho-Corasick automaton
Function AC Preproc Goto (p, m, �)
create state q0
forall the α ∈ � do

g(q0, α) := f ail
end
for i := 0; i < m; i := i + 1 do

j := 0; state := q0
while newState := g(state, pi

j) �= f ail do
state := newState; j := j + 1

end
for k := j; k < m; k := k + 1 do

create state qcurrent
forall the α ∈ � do

g(qcurrent, α) := f ail
end
newState := qcurrent
g(state, pi

k) := newState
state := newState

end
Output(qcurrent) := Output(qcurrent) ∪ {pi}
Add terminal state on qcurrent

end

The goto function can be implemented using any of the following data structures:
an array of size |�|, where each state has an outgoing transition for every character
of the alphabet by precomputing all the transitions simulated by the supply function
[Navarro and Raffinot 2002]; a linked list that is space efficient but not time efficient;
or a balanced search tree that is considered as a heavy-duty compromise and often not
practical [Dori and Landau 2006]. The implementation used for the experiments of this
article was based on code from the Streamline system I/O software layer [Streamline
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ALGORITHM 2: The construction of the supply function Supply of the Aho-Corasick automaton
Function AC Preproc Supply (�)
forall the α ∈ � do

if g(q0, α) = f ail then
g(q0, α) := q0

else
Supply(g(q0, α)) := q0

end
end
forall the currentState ∈ trie states in transversal order do

forall the α ∈ � do
s := g(currentState, α)
if s �= f ail then

state := Supply(currentState)
while g(state, α) = f ail do

state := Supply(state)
end
Supply(s) := g(state, α)

end
end

end

ALGORITHM 3: The search phase of the Aho-Corasick automaton
Function AC Search (t, m, n)
state := q0
for i := 0; i < n; i := i + 1 do

while newState := g(state, ti) = f ail do
state := Supply(state)

end
state := newState
if Output(state) is not empty then

report match at i − m+ 1
end

end

2012]. It uses a linked list for the supply function and a linked list of arrays to represent
the transitions of the goto function with each cell of the arrays potentially containing a
pointer to the next node. Each node of the list corresponds to a different state of the trie
and has an array of size |�| with an outgoing transition for every character of �. The trie
of P can then be built for all m patterns in O(|�|m2) time, with a total size of O(|�|m2).
The time to pass through a transition of the goto function is O(1) in the worst and
average case, while the search phase has a cost of O(n) in the worst and average case.

2.2. Baker and Bird

Baker and Bird utilizes the Aho-Corasick and Knuth-Morris-Pratt algorithms to per-
form two-dimensional pattern matching in worst- and average-case linear time. The
general idea behind the algorithm is to construct the trie of Aho-Corasick from the
pattern rows and then assign an index to each distinct row. During the preprocessing
phase of the algorithm, the trie of the Aho-Corasick algorithm is built from each pattern
row p0, p1, . . . , pm−1 ∈ P and a unique index is assigned to each terminal state q. Con-
sequently, the two-dimensional pattern P can be reduced to a one-dimensional array
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P ′ of indices. Array P ′ is then preprocessed using the Knuth-Morris-Pratt algorithm
so that the longest border v of each suffix of P ′ can be computed. This information is
stored in a next table.

To locate all the occurrences of the pattern in the input string, two distinct steps are
used: row-matching and column-matching. During the row-matching step, the input
string is scanned horizontally. For each position j, k, it is determined the state of the
Aho-Corasick trie that corresponds to the longest suffix uk of characters tj,0 . . . tj,k.
If that state is terminal, then a pattern row pr matches with uk. For every such
position, it must be determined if pattern rows p0, . . . , pr−1 also occur at positions
tj−r,k−m+1 . . . tj−r,k, . . . , tj−1,k−m+1 . . . tj−1,k. This is done in the column-matching step with
the use of the Knuth-Morris-Pratt algorithm vertically. For this purpose, a table a of
size n is maintained. The table is used to store values for each of the n columns of
the input string such that when a[k] = r, pattern rows 0, . . . , r − 1 exist immediately
above the current. If a[k] = r and the suffix of the input string at position j, k matches
with pattern row pr, then a[k] is set to r + 1. If the input string suffix does not match
with pr, a[k] is set to s + 1, where s is the longest border of P ′

0, . . . , P ′
r−1, as determined

based on the values of the next table. A complete match of the pattern is found with its
top left corner at position j − m+ 1, k − m+ 1 of the input string when a[k] ≥ m− 1
at the end of the column-matching step. If the row-matching step does not locate an
occurrence of any pattern row at a column k of the input string, then a[k] is set to 0.
Algorithms 4 and 5 depict the row-matching and column-matching steps of the search
phase of Baker and Bird. The implementation used for the experiments of this article
is based on code from Tucker [2004].

The Baker and Bird algorithm uses O(n+|�|m2) extra space to store tables a and P ′,
and the trie of the Aho-Corasick algorithm. The trie is built in O(|�|m2) time during
the preprocessing phase, as detailed previously. Array P ′ is preprocessed using the
Knuth-Morris-Pratt algorithm in O(m) time. The algorithm requires an O(n2) theoret-
ical searching time in the worst and average case to scan the input string.

Consider the following example: Pattern P is used during the preprocessing phase
to create the trie of the Aho-Corasick algorithm.

ALGORITHM 4: The row-matching step of the Baker and Bird algorithm
Function BB Row Matching (p, t, m, n)
head := q0
for k := 0; k < n; k := k + 1 do

a[k] := 0
end
for j := 0; j < n; j := j + 1 do

r := head
for k := 0; k < n; k := k + 1 do

while (s := g(r, tj,k)) = f ail do
r := Supply(r)

end
r := s
if Output(r) is not empty then

BB Column Matching (p, a, k, j, r, m)
else

a[k] := 0
end

end
end
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Fig. 1. The automaton of the Aho-Corasick algorithm for the example pattern P.

ALGORITHM 5: The column-matching step of the Baker and Bird algorithm
Function BB Column Matching (p, a, k, j, r, m)
i := a[k]
while i > 0 AND pi

0...m−1 �= Output(r) do
i := next[i]

end
if i + 1 < m then

a[k] := i + 1
else

a[k] := 0
end
if i >= m− 1 then

report match at j − m+ 1, k − m+ 1
end

P =

A A C C A
A A A G G
A A C C A
A A A G G
A A A A C

As shown in Figure 1, L(5) = p0, L(8) = p1, and L(10) = p4. Index 0 can be assigned
to pattern p0, index 1 can be assigned to pattern p2, and index 2 can be assigned to
pattern p4. Note that p2 = p0 and p3 = p1 and, therefore, they share the same index.
Hence, the two-dimensional pattern P can be reduced to a one-dimensional array of
indices P ′.

P ′ =

0
1
0
1
2

The array P ′ is then preprocessed using the Knuth-Morris-Pratt algorithm to com-
pute the next table:
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Fig. 2. The automaton of the Knuth-Morris-Pratt algorithm for the row indices of P ′.

i = 0 1 2 3 4 5
P ′ = 0 1 0 1 2

next[i] = −1 0 −1 0 2 0

The next table can also be represented as a finite automaton, as depicted in Figure 2.
State 0 is the initial state, each character of P ′ labels the path between two different
states of the automaton while L(q) is the label of the path between the initial and a
given state q. The solid lines represent the success links that are used to visit the next
node of the automaton after a successful match of a pattern character, similar to the
goto function of the Aho-Corasick algorithm. The dashed lines represent the supply
links that are used to return to a previous state of the automaton after a mismatch
between a pattern character and an input string character.

During the row-matching step, each row of the input string is scanned horizontally,
starting from t0,0. At each position, j, k is determined the state of the trie that cor-
responds to the longest suffix of tj,0 . . . tj,k. If this state is terminal, the index that
corresponds to the matching pattern row is assigned to the suffix of the input string.
In any other case, −1 is assigned. Subsequently, the input string T can be converted
to T ′.

T =

A A C C A A A C C
A A A G G A A A G
A A C C A A A C C
A A A G G A A A G
A A C C A A A C C
A A A G G A A A G
A A C C A A A C C
A A A G G A A A G
A A A A C A A A A

T ′ =

−1 −1 −1 −1 0 −1 −1 −1 −1
−1 −1 −1 −1 1 −1 −1 −1 −1
−1 −1 −1 −1 0 −1 −1 −1 −1
−1 −1 −1 −1 1 −1 −1 −1 −1
−1 −1 −1 −1 0 −1 −1 −1 −1
−1 −1 −1 −1 1 −1 −1 −1 −1
−1 −1 −1 −1 0 −1 −1 −1 −1
−1 −1 −1 −1 1 −1 −1 −1 −1
−1 −1 −1 −1 2 −1 −1 −1 −1

Note that the index for each suffix of the input string is calculated online, and thus
table T ′ is not stored in memory. At position t0,4 of the input string, the Baker and Bird
algorithm determines that a pattern row occurs as a suffix of t0,0. . . t0,4 because index 0
was encountered. As the value of a[4] was initially set to 0 and there is an occurrence of
any pattern row, the value of a[4] is incremented to 1. By using the goto and the supply
functions of the trie, the indices for the subsequent input string positions are calculated
until index 1 is encountered at position t1,4. Since the value of a[k] was previously set to
1 and p1 is equal to the m-character suffix of t1,0. . . t1,4, the value of a[4] is incremented
to 2. This procedure is repeated for positions t2,4 and t3,4 of the input string where the
value of a[4] is set to 3 and 4, respectively. At position t4,4, index 0 is encountered, but
p4 does not match with the suffix of t4,0. . . t4,4. Based on the information of the next
table, the longest border v of P ′

5 is P ′
0 P ′

1; therefore, P ′
2 can be aligned with the input

string at position t4,4. The algorithm continues until it is determined that a complete
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match of the pattern occurs ending at position t8,4 of the input string. The values of
table a for column 4 of the specific input string will be the following.

a[4] =

1
2
3
4
3
4
3
4
5

Since the value of a[4] = 5 at row 8 of the input string, a complete match of P is
reported at t4,0 . . . t4,4,. . . , t8,0 . . . t8,4.

2.3. Baeza-Yates and Regnier

The Baeza-Yates and Regnier algorithm is similar to the Baker and Bird algorithm.
It uses the Aho-Corasick algorithm to create a trie from the pattern rows and assign
an index to each distinct row. The input string is then scanned horizontally for the
occurrences of the pattern indices. A significant difference though is that during the
search phase only � n

m	 primary rows of the input string are scanned, since they cover
all possible positions where a pattern row may occur. If a match is found on a primary
row, then m characters on each of the m− 1 secondary rows are also scanned for the
pattern indices using the Aho-Corasick algorithm, to determine if a complete match
occurs.

During the preprocessing phase of the algorithm, the trie of the Aho-Corasick al-
gorithm is built from each pattern row p0, p1, . . . , pm−1 ∈ P and a unique index is
assigned to each terminal state q. Consequently, the two-dimensional pattern P can be
reduced to a one-dimensional array P ′ of indices. The indices assigned to the terminal
states are accessible through an Id() function.

For each position j, k of a primary row of the input string, the algorithm uses
the Aho-Corasick trie to determine the state that corresponds to the longest suf-
fix uk of tj,0 . . . tj,k, as depicted in Algorithm 6. Note that the search of the pri-
mary rows of the input string is identical to the row-matching step of the Baker
and Bird algorithm, as shown in Algorithm 4, with the difference that it is per-
formed on only � n

m	 rows. If this state is terminal, pattern row pr occurs in the input
string at that position. Then it must be determined if pattern rows p0, . . . , pr−1 oc-
cur at positions tj−r,k−m+1 . . . tj−r,k, . . . , tj−1,k−m+1 . . . tj−1,k and pr+1, . . . , pm−1 at positions
tj+1,k−m+1 . . . tj+1,k, . . . , tj+m−r−1,k−m+1 . . . tj+m−r−1,k of the input string using again the
Aho-Corasick trie, as presented in Algorithm 7. When two or more rows of the pattern
are identical (e.g., pr = pl), scanning on the secondary rows of the input string should
be repeated for each of the identical rows. In the worst case (where p0 = · · · = pm−1),
2m− 1 possible rows must be scanned (the primary row, m− 1 secondary rows above
and m− 1 secondary rows below the primary). In that case, the search on each position
of the input string would be O(m3) for a total cost of O(n2m2) for the algorithm. To
improve the efficiency of the vertical search, a table b of size 2m−1 is used to store and
reuse the indices of the primary and the 2m− 2 secondary rows. That way, the input
string is scanned only for the occurrence of the distinct rows of the pattern, as can be
seen in Algorithm 8.
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ALGORITHM 6: The search of the Baeza-Yates and Regnier algorithm on the primary rows
Function BYR Search Primary Rows (t, m, n)
head := q0
for j := m− 1; j < n; j := j + m do

r := head
for k := 0; k < n; k := k + 1 do

while (s := g(r, tj,k)) = f ail do
r := Supply(r)

end
r := s
if Output(r) is not empty then

if P ′
m−1 = m− 1 then
BYR Search Secondary Rows Unique (Id(r), j, k − m+ 1, t, m, n)

else
BYR Search Secondary Rows Duplicate (Id(r), j, k − m+ 1, t, m, n)

end
end

end
end

ALGORITHM 7: The search of the Baeza-Yates and Regnier algorithm on the secondary rows
when all pattern rows are unique
Function BYR Search Secondary Rows Unique (index, j, k, t, m, n)
head := q0
for tt := j − index, pp := 0; pp < m; tt := tt + 1, pp := pp + 1 do

if pp = index then
continue

end
r := head
for c := k; c ≤ k + m− 1; c := c + 1 do

while (s := g(r, ttt,c)) = f ail do
r := Supply(r)

end
r := s

end
if Id(r) �= P ′

pp then
return

end
report match at j − index + 1, k

end

The Baeza-Yates and Regnier algorithm uses O(|�|m2) extra space to store the trie of
the Aho-Corasick algorithm, O(m) extra space for table b and O(m) extra space for array
P ′. The trie is built in O(|�|m2) time during the preprocessing phase. The algorithms
uses O( n2

m ) time in the worst case to scan all characters of the primary rows and O(m2)
for all characters of the secondary rows for a searching cost of O(n2m). On average, the
probability that a row of the pattern is matched at a given position of the input string is
given by m

|�|m with an upper bound of n2

m for the scanning of the primary rows and a total

search phase cost of n2m2

|�|m . Since m2

|�|m < 4
m for each m ≥ 1 and |�| ≥ 2, the search phase

complexity of the Baeza-Yates and Regnier algorithm is O( n2

m ) in the average case. This
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ALGORITHM 8: The search of the Baeza-Yates and Regnier algorithm on the secondary rows
when duplicate pattern rows exist
Function BYR Search Secondary Rows Duplicate (index, j, k, t, m, n)
head := q0
for i := 0; i < 2m− 1; i := i + 1 do

b[i] := −1
end
b[m− 1] := index
for i := 0; i < m; i := i + 1 do

if P ′
i �= index then

continue
end
for d := j − i, w := m− 1 − i; d ≤ j − i + m− 1 AND d < n; d := d + 1, w := w + 1 do

if b[w] = P ′
d− j+i then

continue
end
r := head
for c := k; c ≤ k + m− 1; c := c + 1 do

while (s := g(r, td,c)) = f ail do
r := Supply(r)

end
r := s

end
b[w] := Output(r)
if b[w] �= P ′

d− j+i then
break

end
end
if d = j − i + m then

report match at d − m, k
end

end

article uses an implementation based on code from the Xaa project by Baeza-Yates and
Fuentes [1996].

Consider the following example with the same pattern P as the one used in Figure 1.
As shown in Figure 1, L(5) = p0, L(8) = p1 and L(10) = p4. Index 0 can be assigned to
pattern p0, index 1 can be assigned to pattern p2 and index 2 can be assigned to pattern
p4. Remember that since p2 = p0 and p3 = p1, they share the same index. Hence, the
two-dimensional pattern P can be reduced to a one-dimensional array of indices P ′ and
subsequently the input string T can be converted to T ′. As with the Baker and Bird
example, the index for each suffix of the input string is calculated online and, therefore,
table T ′ is not stored in memory. The values of P, P ′, T and T ′ are identical to the
respective tables given in Section 2.2.

The Baeza-Yates and Regnier algorithm starts scanning from position t4,0 of the
input string. At t4,4, index 0 is encountered. Pattern rows p0 and p2 share the same
index because they are identical, and thus table b is used. That way, it is ensured that
pattern rows will be compared to substrings of the input string at most 2m− 1 times.
The initial value of b[4] is set to the index of the matching pattern row. Pattern row p0

is aligned next with the 4th row of the input string. In that case, the indices of the input
string suffixes t4,0 . . . t4,4, . . . , t8,0 . . . t8,4 are calculated and compared with the indices of
pattern rows p0 to p4. Since b[4] = P ′[0], the index of the suffix of the input string at
positions t4,0 . . . t4,4 can be reused. The indices of the input string suffixes at positions
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t5,0 . . . t5,4, . . . , t8,0 . . . t8,4 are calculated and stored in b[5], . . . , b[8]. Since all indices of b
now match with the indices stored in P ′, it is determined that a complete match occurs.

b =

−1
−1
−1
−1
0

−1
−1
−1
−1

0
1
0
1
2

0
1
0
1
0
1
0
1
2

Pattern row p2 is then aligned with the fifth row of the input string. The indices
of the input string suffixes t2,0 . . . t2,4, . . . , t6,0 . . . t6,4 are calculated and compared with
the indices of pattern rows p0 to p4. The indices of input string suffixes t2,0 . . . t2,4 and
t3,0 . . . t3,4 were not determined before and are, therefore, calculated and stored in b[2]
and b[3]. The values of b[4] and b[5] were calculated in the previous step, and because
b[4] = P ′[2] and b[5] = P ′[3], the indices of input string suffixes t4,0 . . . t4,4 and t5,0 . . . t5,4
can be reused. The value of b[6] was previously set but is different from P ′[4]; therefore,
is calculated again using the trie of Aho-Corasick. Since the new value of b[6] is equal
to 0 and P ′[4] = 2, it is determined that a mismatch occurs between the pattern and
the input string:

b =

−1
−1
−1
−1
0
1
0
1
2

0
1
0
1
2

0
1
0
1
0
1
0
1
2

3. ALGORITHM VARIANTS

This section briefly presents the Set Horspool, Set Backward Oracle Matching, Wu-
Manber and the SOG multiple pattern matching algorithms, discusses implementa-
tion details for the variants of the Baker and Bird and the Baeza-Yates and Regnier
two-dimensional pattern matching algorithms and highlights their differences to the
original implementations. The analysis of the algorithms assumes that the pattern set
consists of m patterns where each pattern has a length of m characters for a total size
of m2 characters.

Table I summarizes the theoretical extra space, preprocessing, worst and average
time complexity of the multiple pattern matching algorithms used.

Experimental results on multiple pattern matching algorithms have been reported
in the past. The performance of a number of algorithms including Aho-Corasick, Set
Horspool, Set Backward Oracle Matching, and Wu-Manber was evaluated in Navarro
and Raffinot [2002] for a randomly generated data set. A variant of the Wu-Manber al-
gorithm called QWM was presented in Dong-hong et al. [2006], and its performance was
compared to Aho-Corasick, Commentz-Walter, and the original Wu-Manber algorithm
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Table I. Known Theoretical Extra Space, Preprocessing, Worst and Average Searching Time Complexity
of Multiple Pattern Matching Algorithms

Algorithm Extra space Preprocessing Worst case Average case

Aho Corasick |�|m2 |�|m2 n n
Set Horspool |�|m2 |�|m2 nm sublinear
Set Backward Oracle Matching |�|m2 |�|m2 nm2 sublinear

Wu-Manber m×
B−1∑

i=0

|�| × (2bitshi f t)i m2 nm2 log|�| m2 n log|�| m2

m

SOG |�|B + m2 m2 nm2 n

for randomly generated data with a binary alphabet and an alphabet of size |�| = 4 as
well as for data with an English and a Chinese language alphabet. HMA, a hierarchical
multiple pattern matching algorithm was introduced in Sheu et al. [2008], and its per-
formance was compared among others to the performance of a compressed version of the
Aho-Corasick algorithm on data for intrusion detection systems. The Aho-Corasick, Set
Horspool, Set Backward Oracle Matching, and Wu-Manber algorithms were compared
in Salmela et al. [2006] in terms of searching time for biological sequence databases
and random input strings for sets consisting of 100 to 100,000 patterns. Each pattern
had a length of m = 8 and 32 characters, while the input string had a size of approxi-
mately 32MB. Finally, a performance study of the Commentz-Walter, Wu-Manber, Set
Backward Oracle Matching, and the Salmela-Tarhio-Kytöjoki algorithms for biological
sequence databases was presented in Kouzinopoulos and Margaritis [2011].

3.1. Two-Dimensional Pattern Matching Using Set Horspool

Set Horspool combines a deterministic finite state pattern matching machine with the
shift function of the Horspool [1980] algorithm to search for the occurrence of multiple
patterns in the input string in sublinear time, on average. The pattern matching ma-
chine used is a trie with a goto function, created from each pattern of the pattern set in
reverse. The search for the occurrences of the patterns is then performed backwards,
similar to Horspool. When a mismatch or a complete match occurs, a number of input
string positions can be safely skipped based on the bad character shift of the Horspool
algorithm generalized for a set of patterns. The bad character shift is calculated for
each different character σ ∈ � as the distance of the rightmost occurrence of σ in any
pattern to the end of that pattern and is stored in a table bc of size |�|. If no such
character exists, the corresponding bad character shift is set to m. The construction of
the bad character shift is given in Algorithm 9.

ALGORITHM 9: The construction of the bad character shift of the Set Horspool algorithm
Function SH Bad Character Shift (P, m, |�|)
for i := 0; i < |�|; i := i + 1 do

bc(i) := m
end
for i := 0; i < m; i := i + 1 do

for j := 0; j < m− 1; j := j + 1 do
bc(pi

j) := MIN(m− j − 1, bc(pi
j))

end
end

Scanning the input string for the occurrences of the patterns is performed back-
wards, starting from character tm−1. For each position i of the input string, the
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algorithm computes the longest suffix ui of t0 . . . ti that is also a suffix of any pattern.
When a complete match is found or a mismatch occurs when reading character σ of the
input string, the trie is shifted to the right according to character β at position i of the
input string until β is aligned with the next state of the trie that is labeled after β. The
implementation of Set Horspool uses a linked list of arrays to represent the transitions
of the goto function with each cell of the arrays potentially containing a pointer to the
next node. Each node of the list corresponds to a different state of the trie and has
an array of size |�| with an outgoing transition for every character of � with O(1)
time in the worst and average case to pass through a transition of the goto function.
The construction of the trie and the shift function requires O(|�|m2) time and space,
whereas the search phase of the algorithm is O(nm) worst-case time or is sublinear, on
average.

Using the Set Horspool trie instead of the Aho-Corasick trie in the Baker and Bird
algorithm is fairly straightforward. During the preprocessing phase, the trie is built
from each pattern row p0, p1, . . . , pm−1 ∈ P in reverse and a unique index is assigned
to each terminal state. Similar to the original implementation, the indices are used by
the Knuth-Morris-Pratt algorithm to create a next table that is then utilized during
the column-matching step of Baker and Bird. Moreover, the bad character shift is
computed for each different character σ ∈ �. In the row-matching step, each row j of
the input string is scanned backwards from character tj,m−1 to tj,n−1. For each position
k of the input string row, the algorithm computes the longest suffix u of tj,0 . . . tj,k that
is also a suffix of any pattern. When a complete match is found or a mismatch occurs
between character σ of the input string and α of the trie, the trie is shifted to the right
according to character β at position k of the input string until β is aligned with the
next state of the trie that is labeled after β. If no such β exists, the trie is shifted to the
right by m positions. The search phase of the Set Horspool variant of the Baker and
Bird algorithm is O(n2m) in the worst case. Since, on average, the searching phase of
the Set Horspool algorithm is sublinear when used for multiple pattern matching, it
is expected for the Set Horspool variant of the Baker and Bird algorithm to be O(Kn),
where K a parameter such that K < n.

Replacing the Aho-Corasick trie with the Set Horspool trie in the Baeza-Yates and
Regnier algorithm is also straightforward. The trie is built during the preprocessing
phase from each pattern row p0, p1, . . . , pm−1 ∈ P in reverse and the two-dimensional
pattern P is reduced to a one-dimensional array P ′ of indices. Additionally, the bad
character shift is computed for each different character σ ∈ �. The scanning on each
primary row j of the input string is performed backwards, starting from character
tj,m−1. Then, for each position k of the primary row, the Set Horspool trie is used to
determine the longest suffix u of tj,0 . . . tj,k that is also a suffix of any pattern from the
pattern set. When a complete match or a mismatch occurs, the trie is shifted to the
right by a number of positions based on the bad character shift function. If pattern
row pr occurs in a primary row of the input string, the trie of Set Horspool is also
used backwards in the secondary rows to determine if pattern rows p0, . . . , pr−1 and
pr+1, . . . , pm−1 occur immediately above and below the current row. The search phase
of the Set Horspool variant of the Baeza-Yates and Regnier algorithm is O(n2m2) in the
worst case and O( Kn

m ) in the average case.

3.2. Two-Dimensional Pattern Matching Using Set Backward Oracle Matching

The Set Backward Oracle Matching algorithm extends the Backward Oracle Matching
[Allauzen et al. 1999] string matching algorithm to search for the occurrence of multiple
patterns in the input string in sublinear time, on average. It uses a factor oracle,
a deterministic acyclic automaton created from each pattern pr ∈ P in reverse that
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is based on the notion of weak factor recognition. The automaton consists of a goto
function g and at most m2 additional external transitions such that at least any factor of
a pattern can be recognized. The goto function is constructed during the preprocessing
phase from the set of the reversed patterns. For each character σ at position i of a
pattern pr, the trie is depth-first traversed. If u is the suffix pr

i+1 . . . pr
m−1 of a pattern

pr and σu does not exist as a label L(q) of a path of the trie, then the trie is extended; a
new state q is created and is labeled by σ and at the same time the outgoing transitions
to q are constructed from the states at all levels between the initial and q. To construct
the external transitions, a supply function Supply is used to specify a supply state for
each state q with the supply state of the initial state being set to ∅. Assume that the
goto and supply functions for all states up to the parent state qparent of q were already
computed and that g(q, σ ) = h. Then, the supply state of q is visited to determine if
there is an outgoing transition by σ . If there is no such transition, then g(Supply(q), σ )
is set to h as an external transition. In that case, Supply(Supply(q)) is visited next and
so on, until a supply state with an outgoing transition by σ is found or until there are
no more states to visit.

During the search phase, the algorithm reads backwards the longest suffix u of the
input string that is also a suffix of any pattern. When a mismatch occurs at position
k of the input string, the oracle can be safely shifted past k. If a terminal state is
reached, a match of some pattern in the input string has potentially been found since
there could be terminal states in the oracle that do not correspond to any pattern.
Additionally, terminal states could exist that correspond to more than one pattern.
For this reason, each terminal state q holds a set of indices F(q) to the patterns it
corresponds. Then, all the patterns in F(q) are compared directly with the input string
to determine if a complete match is found and the factor oracle is shifted by one position
to the right. The implementation of Set Backward Oracle Matching uses a linked list
of arrays to represent the transitions of the goto function with each cell of the arrays
potentially containing a pointer to a different node. Each node of the list corresponds
to a different state of the trie and has an array of size |�| with an outgoing transition
for every character of � with O(1) time in the worst and average case to pass through
a transition of the goto function. The set of indices F is stored to each terminal state
using an array of size mbecause, in the worst case, a terminal state could correspond to
all m patterns. An auxiliary table aux of size m is also maintained; the inverse of array
P ′ that maps indices to the patterns they correspond. The oracle is created during the
preprocessing phase in O(|�|m2) for all m patterns of the pattern set using a size of
O(|�|m2). The search phase complexity of the algorithm is O(nm2) in worst-case time
or sublinear in average time.

To adapt the Baker and Bird algorithm so that it can use the factor oracle of the
Set Backward Oracle Matching algorithm, it must be taken under consideration that
a terminal state q could correspond to no pattern or to multiple patterns at once.
During the preprocessing phase, the factor oracle is created from the patterns in P
in reverse and a unique index is assigned to each distinct pattern pr. The indices
are processed by the Knuth-Morris-Pratt algorithm to create a next table. In the row-
matching step, each row j of the input string is scanned backwards, starting from
character tj,m−1. If during row-matching a terminal state q of the oracle is reached at
position j, k of the input string, all patterns that F(q) points to are compared directly
with the input string to determine the index to be assigned to the suffix of tj,0 . . . tj,k
that corresponds to the matching pattern and the oracle is shifted by one position to
the right. If no pattern corresponds to the suffix of the input string or a mismatch
occurs between a character σ of the input string and α of the oracle at column k, the
factor oracle is shifted past k. The search phase of the Set Backward Oracle Matching
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variant of the Baker and Bird algorithm is O(n2m2) in the worst case and O(Kn) in the
average case.

The Baeza-Yates and Regnier algorithm was implemented using the Set Backward
Oracle Matching algorithm as follows. During the preprocessing phase, the factor or-
acle is constructed from the pattern rows in reverse and the two-dimensional pattern
is reduced to a one-dimensional array of indices. For each position k of a primary row
j of the input string, the factor oracle is used to read backwards the longest suffix
u of tj,0 . . . tj,k that is also a suffix of a pattern row. When a mismatch occurs at po-
sition j, k, the oracle can be safely skipped to the right past k. If a pattern row is
matched in a primary row, then the secondary rows are also scanned backwards us-
ing the factor oracle to determine if a complete match occurs and the factor oracle is
then shifted by one position to the right. Since a terminal state q of the oracle could
exist that does not correspond to any pattern or that corresponds to more than one
pattern, any potential matches in the primary or the secondary rows must be verified
directly with the input string using the set of indices F(q), similar to the Set Backward
Oracle Matching implementation of the Baker and Bird algorithm. The theoretical
searching time complexity of the Set Backward Oracle Matching implementation of
the Baeza-Yates and Regnier algorithm is O(n2m3) in the worst case and O( Kn

m ) in the
average case.

3.3. Two-Dimensional Pattern Matching Using Wu-Manber

Wu-Manber is a generalization of the Horspool algorithm for multiple pattern match-
ing. It scans the characters of the input string backwards for the occurrences of the
patterns, shifting the search window to the right when a mismatch or a complete match
occurs. To perform the shift, the bad character shift function of the Horspool algorithm
is used. As previously detailed, the bad character shift for a character σ determines
the safe number of shifts based on the position of the rightmost occurrence of σ in any
pattern. The probability of σ existing in one of the patterns increases in the size of the
pattern set and is inversely proportional to the alphabet size and thus the maximum
possible shift is decreased. To improve the efficiency of the algorithm, Wu-Manber con-
siders the characters of the patterns and the input string as blocks of size B instead of
single characters, essentially enlarging the alphabet size to |�|B.

During the preprocessing phase, three tables are built from the patterns, the SHIFT,
HASH and PREFIX tables. SHIFT is the equivalent of the bad character shift of the
Horspool algorithm for blocks of characters, generalized for multiple patterns. If B
does not appear in any pattern, the search window can be safely shifted by m− B + 1
positions to the right. Let h be the hash value of a block of B characters as determined
by a hash function h1(). Then, SHIFT [h] is the distance of the rightmost occurrence of
B to the end of any pattern. The HASH and PREFIX tables are only used when the shift
value stored in SHIFT [h] is equal to 0. HASH[h] contains an ordered list of pattern
indices whose B-character suffix has a hash value of h. For each of these patterns, let
h′ be the hash value of their B′-character prefix as determined by a hash function h2().
The hash value h′ for each pattern p is stored in PREFIX[p]. That way, a potential
match of the B-character suffix of a pattern can be verified first with the B′-character
prefix of the pattern before comparing the patterns directly with the input string. The
complexity of Wu-Manber was not given in the original paper, since hash functions
h1() and h2() were not specified and the size of the SHIFT, HASH and PREFIX tables
was not given [Navarro and Raffinot 2002]. For the experiments in this article, the
algorithm was implemented with a block size of B = 3 and B′ = 2 while hash values h
and h′ were calculated by shift and add; shifting the hash value to the left by bitshift
positions and then adding in the ASCII value of a pattern or input string character.
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The value of bitshift was set to 2. Finally, the verification of the patterns to the input
string was performed using the memcmp() function of string.h.

The cost of the implementation used in the experiments of this article is as fol-
lows. To calculate the values of the SHIFT, HASH and PREFIX tables during the
preprocessing phase, the algorithm requires an O(m2) time. The space of Wu-Manber
depends on the size of SHIFT, HASH and PREFIX. The space needed for the SHIFT
table is

∑B−1
i=0 |�| × (2bitshi f t)i. In the worst case, there could be m patterns with the

same hash value h or h′ for their B-character suffix or B′-character prefix, respec-
tively; therefore, HASH and PREFIX require a m × ∑B−1

i=0 |�| × (2bitshi f t)i space for
a space complexity of O(m × ∑B−1

i=0 |�| × (2bitshi f t)i). In the worst case for the search-
ing phase of the Wu-Manber algorithm, the input string and m − 1 characters of all
m patterns consist of the same repeating character σ with the character at position
m − B − 1 of each pattern being different. The algorithm will then encounter a po-
tential match on every position of the input string because SHIFT [h] will constantly
be 0. Therefore, as hash values h and h′ of the patterns will be identical, the m − B
characters of all m patterns will be compared directly with the input string using the
memcmp() function. The worst case searching time of Wu-Manber is given in Chen
et al. [2005] as O(nm2 log|�| m2). In Navarro and Fredriksson [2004] the lower bound
for the average time complexity of exact multiple pattern matching algorithms is given
as �( n log|�| m2

m ), and according to Chen et al. [2005], the searching phase of the Wu-

Manber algorithm is optimal in the average case for a time complexity of O( n log|�| m2

m ).
In Liu et al. [2005] the average time complexity of Wu-Manber was also estimated as
O( n

(m−B+1)×(1− (m−B+1)×m
2×|�|B )

).

Implementing Baker and Bird with the Wu-Manber algorithm requires significantly
more effort than the Set Horspool and Set Backward Oracle Matching variants pre-
sented earlier. Rather than using a trie, the Wu-Manber variant of Baker and Bird is
using a search window that slides along each row j of the input string. During the
preprocessing phase, a hash value hs is computed for each pattern row p0, p1, . . . , pm−1

using the hash function of the Wu-Manber algorithm. Both the hash values and the
pointers to the pattern rows they correspond are stored in a hashmap that is then used
to assign a unique index to each different pattern row in O(m2) time. Pattern rows with
the same hash value are compared on a character by character basis to determine if they
are identical, before they are assigned the same index. That way, the two-dimensional
pattern P is reduced to a one-dimensional array P ′ of indices. Moreover, the SHIFT,
HASH and PREFIX tables of the Wu-Manber algorithm are built from the pattern
rows. The array P ′ is then preprocessed using the Knuth-Morris-Pratt algorithm to
compute the values of the next table. During the row-matching step and for each posi-
tion j, k of the input string, a hash value hof the B-character suffix of the search window
at tj,k−m+1 . . . tj,k is computed backwards using the h1() function. If SHIFT [h] = 0, the
hash value h′ of the B′-character prefix of the search window is also computed. If both
the prefix and suffix of the search window match the prefix and suffix of one or more
pattern rows, the corresponding rows are compared directly with the input string to
determine if a match of one of the pattern rows occurs. The search window is then
shifted by one position to the right. If, on the other hand, SHIFT [h] �= 0, the search
window is subsequently shifted by SHIFT [h] positions. The Wu-Manber variant of
the Baker and Bird algorithm is O(n2m2 log|�| m2) in the worst case and O( n2 log|�| m2

m ) in
the average case.

The Baeza-Yates and Regnier algorithm also requires a unique index to be assigned
to each different pattern row. During the preprocessing phase, a hash value hs is
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calculated for each p ∈ P and together with a pointer to the pattern it corresponds are
stored in a hashmap. Each pattern row is then assigned an index in O(m2) time using
the hashmap as already discussed. Finally, the SHIFT, HASH and PREFIX tables are
computed. The search phase is performed backwards only on the primary rows of the
input string. Starting from position m− 1 of a primary row j and for each character
tj,k, the hash value h of the B-character suffix of the search window at tj,k−m+1 . . . tj,k
is calculated. Based on the value of SHIFT [h], the search window is either shifted
to the right by SHIFT [h] positions or its B′-character prefix is calculated. If both the
prefix and suffix of the search window match the prefix and suffix of some pattern
rows, then the corresponding rows are compared directly with the input string. If
there is a match on a primary row, then a hash value hs is computed for each of the
m-character substrings of the at most 2m−2 secondary rows and based on the hashmap
it is determined if they correspond to the appropriate indices of the pattern rows. The
search window is then shifted by one position to the right. The theoretical search
phase complexity of the Baeza-Yates and Regnier algorithm when implemented using
the Wu-Manber algorithm is O(n2m3 log|�| m2) in the worst case and O( n2 log|�| m2

m2 ) in the
average case.

3.4. Two-Dimensional Pattern Matching Using SOG

The SOG algorithm extends the Shift-Or [Baeza-Yates and Gonnet 1992] string match-
ing algorithm to perform multiple pattern matching in linear time, on average. SOG is
a bit-parallel algorithm simulating a nondeterministic automaton that acts as a char-
acter class filter; it constructs a generalized pattern that can simultaneously match all
patterns from a finite set. The generalized pattern accepts classes of characters based
on the actual position of the characters in the patterns. The searching phase of the algo-
rithm consists of a filtering phase and a verification phase. When a candidate match is
found at a given position of the input string during the filtering phase, the patterns are
verified using a combination of hashing and binary search to determine if a complete
match of a pattern occurs. When the pattern set has a relatively large size, every posi-
tion of the generalized pattern will accept most characters of the alphabet. In that case,
false candidate matches will occur in most positions of the input string. To overcome
this problem, SOG increases the alphabet size to |�|B by processing the characters in
blocks of size B, similar to the methodology used by the Wu-Manber algorithm.

The preprocessing time of the SOG algorithm is O(m2) with an O(|�|B+m2) space. For
the verification of the patterns using two-level hashing and binary search, no checking
of candidate matches is needed in the best case. In the worst case and assuming that
all pattern rows and input string positions have the same hash value, the verification
time is O(nm2). If the pattern rows have a different hash value, the verification time
is O(n(log m+ m)) instead. The filtering phase is linear in n in the worst and average
case. The combined filtering and verification phase is then O(nm2) when all pattern
rows have the same hash value and O(nm) otherwise in the worst case and linear in n
in the average case.

During the preprocessing phase, a hash value h is assigned to each different
B-character block of the patterns using a hash function h1(). For each different h, a
bit vector V [h] is initialized by setting the ith bit of V [h] to 0 if the B-character block
corresponding to h is found in the ith position of any pattern or to 1 otherwise. For the
verification phase, a hash value hs is computed for each pattern by forming a 32-bit
integer of every four bytes of the pattern and then using the XOR logical operation
between the integers. For a pattern pr of length m = 8, its hash value hs will be:

hs = pr
0 pr

1 pr
2 pr

3 � pr
4 pr

5 pr
6 pr

7.
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Table II. Known Theoretical Extra Space, Preprocessing, Worst and Average Searching Time Complexity of the
Baker and Bird Algorithm Implementations

Implementation Extra space Preprocessing Worst case Average case

Aho-Corasick n + |�|m2 |�|m2 n2 n2

Set Horspool n + |�|m2 |�|m2 n2m Kn
Set Backward Oracle Matching n + |�|m2 |�|m2 n2m2 Kn

Wu-Manber n + m×
B−1∑

i=0

|�| × (2bitshi f t)i m2 n2m2 log|�| m2 n2 log|�| m2

m

SOG n + |�|B + m2 m2 n2m2 n2

To improve the efficiency of the hashing method described, a two-level hashing
technique [Muth and Manber 1996] is used. This technique involves creating a 16-bit
hash value hs′ by using the XOR logical operation between the lower and the upper 16
bits of hs that is stored in an ordered table. For the experiments of this article, SOG
was implemented with a block size of B = 3.

The SOG variant of the Baker and Bird algorithm uses a search window that slides
along each row of the input string instead of a trie, similar to the Wu-Manber variant
presented earlier. During the preprocessing phase, a hash value h is assigned to each
different B-character block of the patterns using the hash function h1() of the SOG
algorithm. Additionally, a hash value hs is computed from each pattern row and a two-
level hash value hs′ is created from hs and stored in an ordered table. The hash value
hs for each pattern row and a pointer to the pattern row it corresponds are stored in
a hashmap that is then used to assign a unique index to each different pattern row in
O(m2) time. To search for the occurrence of the patterns in the input string during the
row-matching step, an m-bit variable E is used that is updated based on the hash value
h of the B-character substrings of each row j of the input string. If the (m− B)th bit of
E is equal to 0, a candidate match occurs that is verified by calculating the two-level
hash of the search window and then searching the ordered table for its occurrence
using binary search. When the Baker and Bird algorithm is implemented using the
SOG algorithm, it has an O(n2m2) theoretical search phase complexity in the worst
case and O(n2) in the average case.

The SOG variant of the Baeza-Yates and Regnier algorithm can be implemented
in a similar way. During the preprocessing phase, the two-dimensional pattern P is
reduced to a one-dimensional array P ′ of indices by calculating the hash value hs of
each pattern row and storing it in a hashmap together with a pointer to the pattern
row it corresponds. Moreover, a two-level hash value hs′ is created from hs and stored
in an ordered table. Finally, a hash value h is assigned to each different B-character
block of the pattern rows using a hash function h1(). The search phase is performed
on only the primary rows as per the original Baeza-Yates and Regnier algorithm. For
each position k of a primary row j, an m-bit variable E is used that is updated based on
the hash value h of each B-character substring of the input string. If the (m− B)th bit
of E is equal to 0, a candidate match occurs that is verified by calculating the two-level
hash of the search window and then searching the ordered table for its occurrence
using binary search. If a match is found on a primary row, then E is updated based
on the hash value h of each B-character substring for each of the secondary rows in
a similar way. The searching phase complexity of the SOG variant of the Baeza-Yates
and Regnier algorithm is the same as of its original implementation; O(n2m3) in the
worst case and O( n2

m ) in the average.
Tables II and III summarize the theoretical extra space, preprocessing and worst and

average searching time complexity of the presented Baker and Bird and Baeza-Yates
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Table III. Known Theoretical Extra Space, Preprocessing, Worst and Average Searching Time Complexity
of the Baeza-Yates and Regnier Algorithm Implementations

Implementation Extra space Preprocessing Worst case Average case

Aho-Corasick |�|m2 |�|m2 n2m n2

m

Set Horspool |�|m2 |�|m2 n2m2 Kn
m

Set Backward Oracle Matching |�|m2 |�|m2 n2m3 Kn
m

Wu-Manber m×
B−1∑

i=0

|�| × (2bitshi f t)i m2 n2m3 log|�| m2 n2 log|�| m2

m2

SOG |�|B + m2 m2 n2m3 n2

m

and Regnier algorithm implementations. The parameter K is defined such that K < n
in the average case. The searching time of SOG corresponds to the time of the filtering
and verification phases of the algorithm combined.

4. EXPERIMENTAL METHODOLOGY

The parameters that describe the performance of two-dimensional pattern matching
algorithms are the length n2 of the input string, the length m2 of the pattern, and the
size |�| of the alphabet used.

To evaluate the performance of the original algorithms and the introduced variants,
the preprocessing and the searching time were used as a measure. Preprocessing time is
the time in seconds an algorithm uses to preprocess the pattern, whereas the searching
time is the total time in seconds an algorithm uses to locate all occurrences of the
pattern in the input string. Both times were measured using the MPI Wtime function
of the message passing interface because it has a better resolution than the standard
clock() function of time.h.

The data set used was a superset of the sets used in Baeza-Yates and Regnier [1993],
Tarhio [1996], and Zhu and Takaoka [1989]. It consisted of a randomly generated input
string with a length of n = 1,000 and n = 10,000 with three alphabets of size 2,256
and 1,024 to simulate bitmaps with different color depths. The pattern had a length of
m = 4, 8, 16, 32, 64, 128, and 256 characters.

The experiments were executed locally on an Intel Core 2 Duo E8400 CPU with a
3.00GHz clock speed and 3GB of memory, 64KB L1 cache per core and 6MB L2 shared
cache. The Ubuntu Linux operating system was used and during the experiments
only the typical background processes ran. To decrease random variation, the time
results were averages of 100 runs. All algorithms were implemented using the ANSI
C programming language and were compiled using the GCC 4.4.3 compiler with the
“-O2” and “-funroll-loops” optimization flags.

5. ANALYSIS

This section discusses the efficiency and presents a performance evaluation in terms
of preprocessing and searching time of the original Baker and Bird and Baeza-Yates
and Regnier two-dimensional pattern matching algorithms and their Set Horspool,
Set Backward Oracle Matching, Wu-Manber, and SOG variants for different problem
parameters including the pattern, input string, and alphabet sizes used.

Figure 3 depicts the preprocessing time of the different implementations of the Baker
and Bird algorithm. The preprocessing time of the Baeza-Yates and Regnier algorithm
was similar and thus is omitted. The searching time of the original Baker and Bird and
the Baeza-Yates and Regnier algorithms and their variants is presented in Figures 4
to 7. All figures have a linear horizontal axis and a logarithmic vertical. Since the
SOG algorithm uses bitwise operations to create the hash values for the verification
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Fig. 3. Preprocessing time of the algorithm implementations.
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Fig. 4. Searching time of the Baker and Bird implementations for an input string with n = 1,000.
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Fig. 5. Searching time of the Baker and Bird implementations for an input string with n = 10,000.

ACM Journal of Experimental Algorithmics, Vol. 18, No. 2, Article 2.4, Publication date: September 2013.



2.4:24 C. S. Kouzinopoulos and K. G. Margaritis

 0.001

 0.01

 0.1

 4  8  16  32  64  128  256

R
un

ni
ng

 ti
m

e 
(s

ec
)

Pattern length (Alphabet = 2)

AC
SH

SBOM
WM

SOG

 0.001

 0.01

 0.1

 1

 4  8  16  32  64  128  256

R
un

ni
ng

 ti
m

e 
(s

ec
)

Pattern length (Alphabet = 256)

AC
SH

SBOM
WM

SOG

 0.001

 0.01

 0.1

 1

 4  8  16  32  64  128  256

R
un

ni
ng

 ti
m

e 
(s

ec
)

Pattern length (Alphabet = 1,024)

AC
SH

SBOM
WM

SOG

Fig. 6. Searching time of the Baeza-Yates and Regnier implementations for an input string with n = 1,000.
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Fig. 7. Searching time of the Baeza-Yates and Regnier implementations for an input string with n = 10,000.
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phase, it is not trivial to implement it on a 32-bit hardware for a pattern where the
length m of each dimension is larger than 32 characters, although it could potentially
be used as a filter to search for the occurrence of subpatterns with a length of up
to 32 characters. For this reason, the searching time of the Baker and Bird and the
Baeza-Yates and Regnier algorithms is given only for patterns of size m = 8, 16, and
32 characters when implemented using the SOG algorithm, similar to the methodology
presented in Salmela et al. [2006]. The experimental results with only a few exceptions
are consistent with the theoretical time complexity, as presented in Tables I through III.

5.1. Performance Evaluation

The Baker and Bird and the Baeza-Yates and Regnier implementations presented
in this article use the Aho-Corasick, Set Horspool, Set Backward Oracle Matching,
Wu-Manber, and the SOG multiple pattern matching algorithms to preprocess the
pattern as discussed in previous Sections. As shown in Table I, the theoretical time
to construct the trie of Aho-Corasick and Set Horspool and the factor oracle of Set
Backward Oracle Matching is O(|�|m2), whereas the theoretical preprocessing time
of the Wu-Manber and SOG algorithms is O(m2). If the theoretical time complexity
of an algorithm can be used as a means to predict its performance, the preprocessing
time of the implementations was expected to increase linearly in m2. The experimental
results, as presented in Figure 3, confirm that the preprocessing time of the original
implementation of the Baker and Bird and the Baeza-Yates and Regnier algorithms
and of their Set Horspool, Set Backward Oracle Matching and Wu-Manber variants
increased linearly in the size of the pattern. The preprocessing time of the SOG variant
of both the Baker and Bird and the Baeza-Yates and Regnier algorithms increased
proportional to the length of the pattern when used on a pattern with m = 16 as
opposed to m = 8 characters, but it was constant in m2 as the length increased from
16 to 32 characters. This irregularity was caused by the aggressive optimization of the
code by the GCC compiler when the “O2” flag was used and was not observed with the
“O0” flag.

Figure 3 also shows that the preprocessing time of all algorithm implementations,
regarding the alphabet size, was in line with their theoretical complexity. More specif-
ically, the time of the Aho-Corasick, Set Horspool, and Set Backward Oracle Matching
implementations of the Baker and Bird and the Baeza-Yates and Regnier algorithms
to preprocess the pattern increased linearly in |�|, whereas the time of the Wu-Manber
and SOG variants of both two-dimensional algorithms was constant in |�|.

The experiments confirm in practice that the time of the Aho-Corasick implemen-
tation of the Baker and Bird and the Baeza-Yates and Regnier algorithms to locate
all occurrences of the pattern in the input string increased linearly in the length n2

of the input string. The pattern length and the alphabet size are two parameters that
are closely correlated as to the manner in which they affect the performance of the
algorithm implementations. The searching time of the original Baker and Bird algo-
rithm was roughly constant in m2, as expected by its average case theoretical time,
although an increase in the searching time of the implementation is apparent for large
pattern sizes, especially when data with alphabets of size |�| = 256 and |�| = 1,024
were used. A similar behavior of the original Baeza-Yates and Regnier algorithm can
be observed to a much greater extent in Figures 6 and 7. In that case and although
the searching time of the implementation had a tendency to decline, in accordance to
its theoretical complexity, a sharp increase can be observed, especially on data with
alphabets of size |�| = 256 and |�| = 1,024. The increase in the searching time of the
implementation is related to the rate of memory cache misses as trie nodes are visited
during the searching phase. The CPU used for the experiments of this article had a
64KB L1 cache per core and a 6MB L2 cache. All data read or written by the CPU are

ACM Journal of Experimental Algorithmics, Vol. 18, No. 2, Article 2.4, Publication date: September 2013.



Two-Dimensional Pattern Matching Using Multiple Pattern Matching Algorithms 2.4:27

stored in the L1 cache in the form of 64-byte cache lines, namely blocks of contiguous
data words. The limited size of the cache results in the eviction of the cache lines to the
L2 cache and from there to main memory to make room in the caches for new cache
lines. Each trie node uses a table of size |�| to store the transitions to other nodes
and since in principle the frequency of cache misses is determined by the size of the
data, increasing the size of the alphabet resulted in the degradation of the implemen-
tations performance. To measure the effect of the memory caches on the performance
of the algorithm implementations, Callgrind, an execution-driven cache simulator was
used from the Valgrind suite [Nethercote and Seward 2007]. A detailed analysis on the
memory architecture of modern processors can be found in Drepper [2007]. Finally, it
can be seen that the searching time of the original Baker and Bird and Baeza-Yates
and Regnier algorithms was constant in |�|, if the sharp increase in time due to the
cache misses is taken into consideration.

The performance in terms of searching time of the Set Horspool and Set Backward
Oracle Matching variants of the Baker and Bird and the Baeza-Yates and Regnier
algorithms has similar characteristics to the original implementations. The time to
locate all occurrences of the pattern in the input string increased linearly in n2 while
a sharp increase in m2 of their searching time is evident when data with alphabets of
size |�| = 256 and |�| = 1,024 were used due to cache misses. Contrary to the original
Baker and Bird algorithm, the searching time of its Set Horspool and the Set Backward
Oracle Matching variants actually decreased in the size of the alphabet, although it
was expected to be constant in |�| in the average case. Recall that when a mismatch
occurs at a position i of the input string, Set Horspool uses the bad character shift of
the Horspool algorithm to shift the trie, while the oracle of the Set Backward Oracle
Matching algorithm is shifted past that position. As the maximum possible shift of the
trie and the factor oracle, respectively, is greatly reduced on data with a small |�|, it can
explain the reduction of the efficiency of the specific algorithm implementations when
used on data with a binary alphabet. The searching time of the Set Horspool and the
Set Backward Oracle Matching variants of the Baeza-Yates and Regnier algorithm, on
the other hand, was roughly constant in |�|. Although the maximum shift was reduced
in that case as well, both the trie and the factor oracle were only shifted along the
primary rows of the input string, thereby not affecting significantly the performance
of the implementations.

The searching time of the Wu-Manber variant of the Baker and Bird and the Baeza-
Yates and Regnier algorithms also increased linearly in n2. The performance in terms
of searching time of the Wu-Manber implementation of the Baker and Bird algorithm
was influenced by the length of the pattern in different ways, based on the alphabet
size used; the time to scan the input string increased in m2 for data with a binary
alphabet while decreased when alphabets of size |�| = 256 and |�| = 1,024 were used.
Wu-Manber, similar to the Set Horspool algorithm, uses the bad character shift of the
Horspool algorithm to shift the search window when a mismatch or a complete match
occurs, and thus, for the reasons described earlier, the algorithm is not efficient when
data with a small alphabet size are used. In practice, for data with a binary alphabet
together with patterns where m ≥ 16, the Wu-Manber variant of Baker and Bird
performed only single-character shifts during the row-matching step of the algorithm.
As with the Set Horspool and the Set Backward Oracle Matching variants of the Baeza-
Yates and Regnier algorithm, the searching time of the Wu-Manber variant was not
significantly affected by the reduction of the maximum shift when binary alphabet data
were used and thus it was decreased in m2 for all alphabet sizes, as expected by the
average theoretical complexity of the algorithm. The time of the Wu-Manber variant
of both the Baker and Bird and the Baeza-Yates and Regnier algorithms to locate all
occurrences of the pattern in the input string decreased in |�|.
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Fig. 8. Experimental map of the implementations of the Baker and Bird algorithm for n = 1,000 and n =
10,000.

Finally, the searching time of the SOG variant of both the Baker and Bird and the
Baeza-Yates and Regnier algorithms increased linearly in n2, whereas it was roughly
constant in m2 and |�|, as expected by the average theoretical searching time of the
algorithm implementations.

5.2. Algorithm Comparison

As shown in Figures 4 through 7, the searching time of the two-dimensional algorithm
implementations was affected in various ways by different problem parameters, and
as such, different implementations are preferred for different types of data. The imple-
mentations of the presented two-dimensional pattern matching algorithms had similar
characteristics for input strings with sizes of n = 1,000 and n = 10,000.

When comparing the implementations of the Baker and Bird algorithm in terms of
searching time, it is clear that the original algorithm was faster than the presented
variants for data with a binary alphabet size. The Set Horspool variant of Baker and
Bird outperformed the rest of the implementations when data with alphabets of size
|�| = 256 and |�| = 1,024 were used together with patterns with a length m between 4
and 16 characters. Finally, the Wu-Manber variant had the fastest searching time for
patterns with a length of m ≥ 32 characters when the same alphabet sizes were used.
Although the Set Backward Oracle Matching and SOG variants of the Baker and Bird
algorithm had a comparable performance in terms of searching time to the rest of the
implementations, they were consistently slower for all types of data.

The original implementation of the Baeza-Yates and Regnier algorithm had the
fastest searching time among the presented implementations for patterns with a length
between m = 4 and m = 16 when data with a binary alphabet were used. Moreover, the
Aho-Corasick together with the Set Horspool implementation of Baeza-Yates and Reg-
nier were faster than the Set Backward Oracle Matching, Wu-Manber, and SOG vari-
ants for data with an alphabet of size |�| = 256 and 1,024 and for patterns with a length
of m = 4. The Wu-Manber variant outperformed the rest of the algorithm implementa-
tions for patterns with a length of m ≥ 32 and a binary alphabet and when data with an
alphabet of size |�| = 256 and 1,024 together with patterns of a length m ≥ 8 were used.

The presented implementations of the Baeza-Yates and Regnier algorithm had a
consistently better performance than the corresponding implementations of the Baker
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Fig. 9. Experimental map of the implementations of the Baeza-Yates and Regnier algorithm for n = 1,000
and n = 10,000.

and Bird algorithm when used on data with a binary alphabet. It is interesting to
note that the Wu-Manber variant of the Baeza-Yates and Regnier algorithm was
two orders of magnitude faster than the respective variant of the Baker and Bird
algorithm for data with a binary alphabet and for all pattern and input string lengths,
as shown in Figures 4 through 7. On data with alphabets of size |�| = 256 and |�| =
1,024 characters, the Aho-Corasick, Set Horspool, and Set Backward Oracle Matching
implementations of the Baker and Bird algorithm were faster than the Aho-Corasick,
Set Horspool and Set Backward Oracle Matching implementations of Baeza-Yates and
Regnier while the Wu-Manber variant was up to three times slower. For the same
types of data, the SOG variant of both Baker and Bird and Baeza-Yates and Regnier
algorithms had a roughly equal performance.

The experimental maps that are depicted in Figures 8 and 9 summarize the most effi-
cient among the presented implementations of the Baker and Bird and the Baeza-Yates
and Regnier algorithms for different pattern, alphabet, and input string sizes.

6. CONCLUSIONS

This article presented efficient variants of the Baker and Bird and the Baeza-Yates
and Regnier algorithms that use the trie of the Set Horspool algorithm, the factor
oracle of the Set Backward Oracle Matching algorithm, and the hashing functions
of the Wu-Manber and SOG algorithms to preprocess a two-dimensional pattern and
then locate all of its occurrences in a two-dimensional input string. The performance
of the original algorithms and their variants was compared in terms of preprocessing
and searching time, and it was detailed the way it was affected by different problem
parameters including the length of the pattern and the input string as well as the size
of the alphabet, since these are the parameters that generally affect the performance
of two-dimensional pattern matching algorithms.

As discussed in the previous section, using the Set Horspool, Wu-Manber, Set Back-
ward Oracle Matching, and SOG data structures in place of the trie of Aho-Corasick
resulted in the improvement of the efficiency in terms of searching time of the Baker
and Bird and the Baeza-Yates and Regnier algorithms for some types of data. More
specifically, the original implementation of the Baker and Bird outperformed the
presented variants only on data with a binary alphabet. When a pattern and an
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input string with alphabets of size |�| = 256 and |�| = 1,024 were used, the Set
Horspool variant outperformed the rest of the Baker and Bird implementations for a
pattern of a length up to m = 16, while Wu-Manber was the fastest implementation
for a bigger pattern length. In a similar fashion, the original implementation of
the Baeza-Yates and Regnier algorithm had the fastest searching time among the
presented implementations when data with a binary alphabet were used together
with a pattern of a length up to m = 16 as well as for data with an alphabet of size
|�| = 256 and 1,024 when a pattern with a length of m = 4 was used, together with
the Set Horspool implementation. For a pattern with a length m between 32 and 256
characters, when a binary alphabet was used and for a pattern with a length mbetween
8 and 256 when an alphabet of size |�| = 256 and 1,024 was used, the Wu-Manber
variant outperformed the Aho-Corasick, Set Horspool, Set Backward Oracle Matching,
and SOG implementations of the Baeza-Yates and Regnier algorithm.

The work presented in this article could be extended with a performance evaluation
of the presented algorithm variants for larger data sizes and for additional types of
data, including photo archives and satellite imagery. The way the memory accesses of
the different implementations of the Baker and Bird and the Baeza-Yates and Regnier
algorithms affect their performance is a very interesting subject that should be studied
further. Future research in the area of two-dimensional pattern matching could focus
on further speeding up the existing algorithms when parallel processed on traditional
parallel architectures including cluster environments and multicore systems as well
as on modern parallel systems like GPU architectures, especially when large data are
involved (i.e., aerial imaging) or in time-critical applications.
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