
Casper Bröcheler, Thomas Vroom, Derrick Timmermans, Alan van den Akker, Guangzhi Tang, Charis Kouzinopoulos, Rico Möckel

Presenter: Dr. Charis Kouzinopoulos

Computer Systems research group

Object grasping (in cluttered scenes) is a core function of robotics

reaching

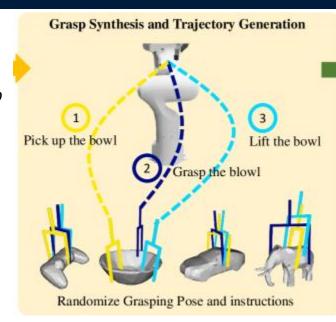
grasping

Steps involved

Maastricht University

CoRoSect Horizon Europe - Insect Breeding

Patient handling


Assembly lines

Object sorting

Application areas

- **Grasp Synthesis:** The problem of creating a set of grasp poses
- Robotic manipulators can grasp objects from multiple angles. 6-DOF grasp pose detection enables robots to grasp from any angle!
- Fast and accurate grasping is <u>still</u> challenging for robots. Tend to generate unreliable grasps, especially in **cluttered scenes**
- Most works resort to the **whole point cloud** for grasp generation
- **HGGD** is a very promising SoTA model that aggregates instead <u>multiple</u> graspable local areas though computational expensive!

S. Deng et. al., GraspVLA: a Grasping Foundation Model Pre-trained on Billion-scale Synthetic Action Data

Research questions

edge?"

RQ1: "How to execute HGGD at the edge with minimal energy

consumption for localized decision making?"

RQ2: "How to parallelize HGGD to enable faster execution at the



8.10.2025

Part A: The HGGD model

Combination of RGBD images with grasp heatmaps

Maastricht University

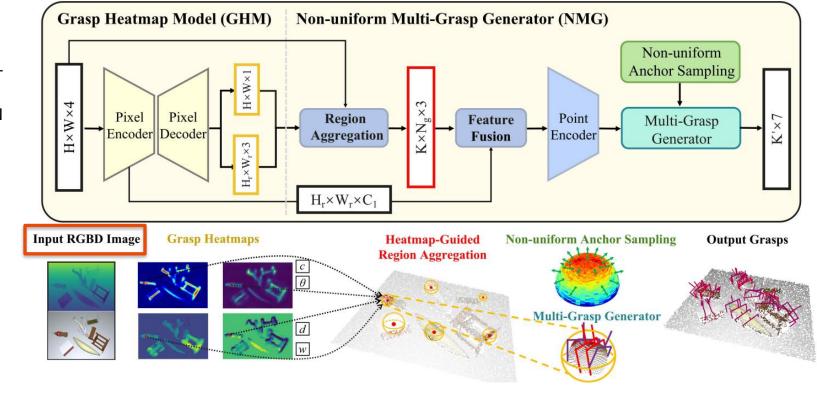
Combination of RGBD images with grasp heatmaps

Maastricht University

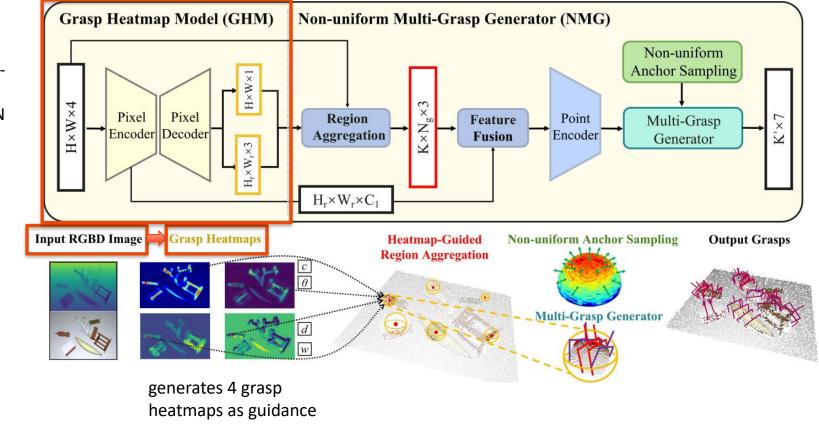
Grasp heatmaps can be generated as guidance to **aggregate local points** into **graspable regions** for further grasp pose generation

Position Orientation Opening width

Siang Chen, et. al., Efficient Heatmap-Guided 6-Dof Grasp Detection in Cluttered Scenes. 2024

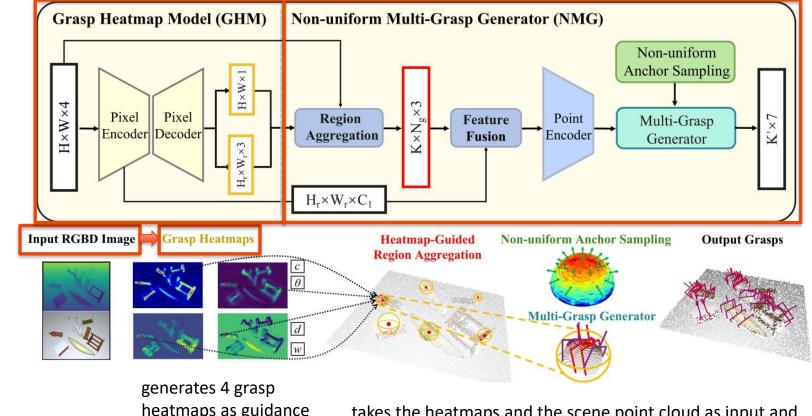

Input RGBD Image Grasp Heatmaps

Heatmap-Guided Region Aggregation


Wulti-Grasp Generator

Multi-Grasp Generator

Encoder-decoder - extracts semantic features via a CNN



Encoder-decoder - extracts semantic features via a CNN

Maastricht University |

Encoder-decoder extracts semantic features via a CNN

heatmaps as guidance

takes the heatmaps and the scene point cloud as input and aggregates multiple graspable local areas

Part B: The HGGD-MCU model **GAP9** deployment

Greenwaves Application Processor 9 - GAP9

- The SoC operates at an internal clock frequency of up to 370MHz, with DVFS
- Fabric Controller (FC) core orchestrates system-level operations
- Cluster of 9 RISC-V cores, identical specifications to FC. Execute independently, allowing concurrent processing of NN
- A dedicated accelerator core, NE16, further enhances NN inference by accelerating MACs

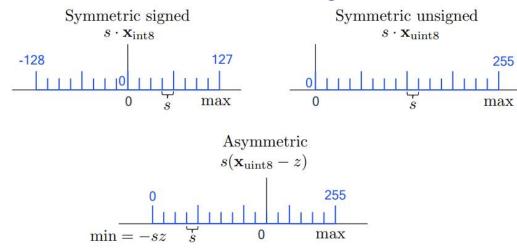
Maastricht University

Quantization

- **Core idea:** map real-valued numbers to a finite set of discrete levels using a linear transformation
- Reduces the numerical precision of model parameters and activations, converting 32-bit FP

into lower bit representations -> reduces model size

 Added benefit: integer operations consume less energy than their FP counterparts


• **Input size reduction:** 640×360 -> 320 × 160

Integer			FP	
Add			FAdd	
8 bit	0.03pJ		16 bit	0.4pJ
32 bit	0.1pJ		32 bit	0.9pJ
Mult			FMult	
8 bit	0.2pJ		16 bit	1pJ
32 bit	3 pJ		32 bit	4pJ
M. Harawitz "agranuting's anargumrahlam (and what				

M. Horowitz, "computing's energy problem (and what we can do about it)."

Quantization

- Core idea: map real-valued numbers to a finite set of discrete levels using a linear
 - transformation
- Scale s, determines quantization granularity
- Zero-point z shifts the quantized range to best approximate 0 in the original domain

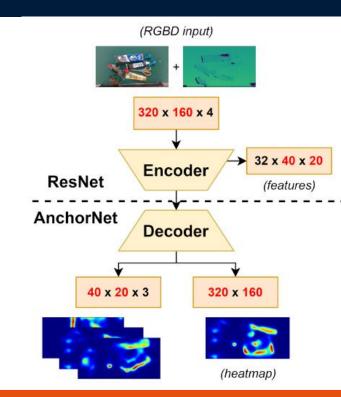
M. Nagel, M. Fournarakis, R. A. Amjad, Y. Bondarenko, M. Van Baalen, and T. Blankevoort, "A white paper on neural network quantization,"

Quantization

Chosen parameters:

- [Granularity] Per-tensor quantization, sharing s and z across the entire tensor
- [Range estimation method] the strategy to define θ_{min} and θ_{max} . Used the min-max strategy, setting θ_{min} and θ_{max} to the minimum and maximum values of the input data to cover the whole dynamic range of the tensor

Pipelined execution

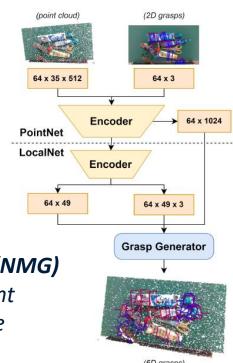

Chosen parameters:

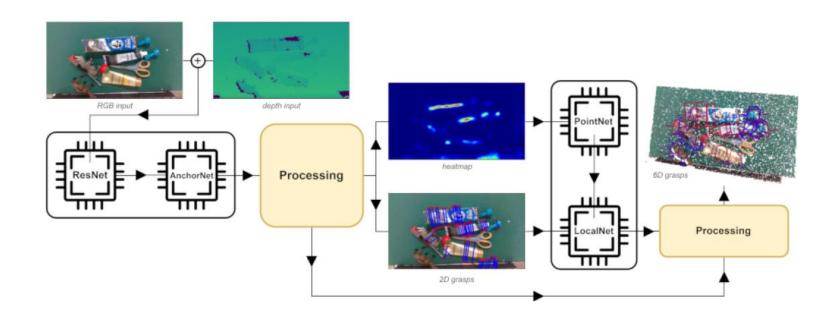
Maastricht University

- Adapted architecture of HGGD
- Dotted lines represent partitioning points, where the original model is split into sub-models

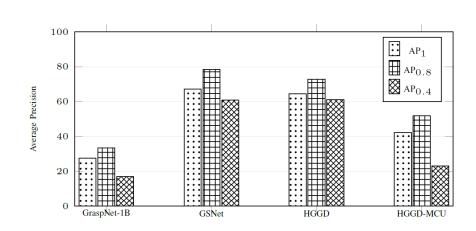
Grasp Heatmap Model (GHM)
Encoder-decoder -

extracts semantic features via a CNN

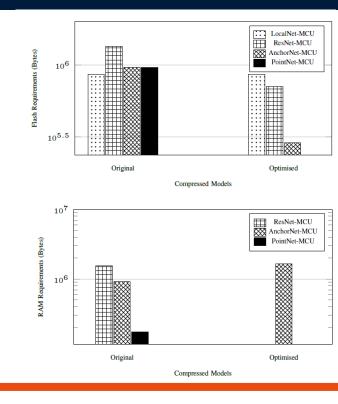

Pipelined execution


Chosen parameters:

- Adapted architecture of HGGD
- Dotted lines represent partitioning points, where the original model is split into sub-models


Non-uniform Multi-Grasp Generator (NMG)

Takes the heatmaps and the scene point cloud as input and aggregates multiple graspable local areas



Edge grasping perception pipeline

Average precision evaluation on the GraspNet-1Billion dataset

Hao-Shu Fang et. al., GraspNet-1Billion: A Large-Scale Benchmark for General Object Grasping

Maastricht University

Conclusions

- Compressed HGGD using quantisation for execution in the GAP9 low-power edge device
- Split HGGD in 4 sub-models to enable pipelined execution

Future work

- Still work in progress!
- Investigate NAS and transfer learning
- Validate in actual robotic tasks using KUKA arms

SCAN ME

Thank you!

Dr. Charis Kouzinopoulos

charis.kouzinopoulos@maastrichtuniversity.nl https://www.linkedin.com/in/kouzinopoulos/ https://kouzinopoulos.github.io/

Learn more about us at www.maastrichtuniversity.nl/dacs

